A System for Developing Tablet PC Applications for
Education

Sam Kamin Michael Hines Chad Peiper Boris Capitanu
Computer Science Dept.
University of Illinois
_ _ ~ Urbana, IL _)
{kamin,mhines3,peiper}@uiuc.edu, borice@gmail.com

ABSTRACT

We describe a new system for building Tablet PC-based
classroom software. The system, called SLICE, is built for
extensibility, using a unique “explicit state” model. Appli-
cations developed thus far include presentation, classroom
interaction, shared code review, and exam grading. The pa-
per presents an overview of the system and describes these
four applications. It then explains the extensibility model,
showing how users can add new features.

Categories and Subject Descriptors

K.3.1 [Computer Uses in Education]: Collaborative learn-
ing

General Terms

Human factors

Keywords

Tablet PC,educational technology,end-user programming

1. INTRODUCTION

Tablet PCs have great potential for classroom instruc-
tion. Their uses have been explored in numerous publica-
tions [1,2,8,11]. They have been used in elementary and
secondary education and for teaching numerous academic
subjects, but development of new systems has, not surpris-
ingly, been done mainly in Computer Science departments.

This paper describes a system, called SLICE, which shares
the goals of these other systems, as did our previous sys-
tem, eFuzion [6,7,10]. The name stands for “Students Learn
In Collaborative Environments,” which succinctly states the
philosophy of our group. SLICE, however, has a further goal,
which is to ease the development of new educational appli-
cations. Because the needs of classrooms are so varied —
based on subject, class organization, educational level, and
teacher preference — a monolithic approach to system de-
velopment would lead to an impossible profusion of systems.

Permission to make digital or hard copies of all or part of this work for

Furthermore, it is our belief that topic-specifc features will
be increasingly important, militating for a highly agile and
decentralized approach to feature development. The history
of extensible systems such as emacs [9] and TeX [3] shows
that motivated users, given the tools, can bring a wealth of
creativity to the task of creating custom functionality.

To achieve this second goal, we have developed an exten-
sible system. SLICE applications are written using Python
scripts running on top of a simple core of functionality. We
have thus far developed four applications: single-user pre-
sentation, classroom interaction, exam-grading, and code re-
view. (The first two of these share much of their code, as
their user interfaces are similar.) These four applications
are described in section 2.

The core of the system consists of 10,000 lines of C#
code. To give one example, the single-user presentation sys-
tem comprises an additional 800 lines of Python. Note that
the core system does not even understand the concept of
a “page;” even that primitive notion is programmed using
scripts. As we will see in section 3.1, the page feature is not
particularly difficult to implement; the additional generality
obtained by not building it into the system allows for the
programming of non-page-based applications, such as the
code review application.

This paper gives a description of the system and the four
applications mentioned above. It provides only minimal de-
scriptions of classroom experiences, and no formal evalua-
tion of educational benefit, as we have not yet done the req-
uisite studies. We are planning such studies in the current
(Fall, 2007) semester.

The structure of the paper is as follows: In the next
section, we discuss the four applications mentioned above.
In section 3, we explain the extensibility model and give
two small examples of scripts — enough, we hope, that the
reader will gain a general idea of how SLICE extensions are
written. We end with a discussion of our future plans.

2. SLICE APPLICATIONS

The software architecture of SLICE facilitates the devel-
opment of Tablet PC applications for education, and has en-
abled us to write a variety of such applications. The reader
is encouraged to view these as just examples of what might
be done, and to give SLICE a try him- or herself. The pro-

personal or classroom use is granted without fee provided that copies aregramming of extensions is discussed in section 3, and in more
not made or distributed for profit or commercial advantage and that copies Jetail on our website.

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

A note on terminology: Essentially all functionality is pro-
vided by scripts in this system, and is therefore, in some
sense, an “extension.” We use the term “application” to re-

i

?K Dijkstra’s algorithm

* Repeat:

L\ — Suppose u is node most recently added to S.

7For all nodes v reachable from u, calculate
distance from s:

« If not previously estimated, distance is u's distance
from s plus distance from uto v.

+ If previously estimated, distance is minimum of
previous estimate and new estimate (u's distance
+ distance from u to v)

+ Continue untild-irS
Gud e VES ceackble

%m“u.

H EE- -

i

Figure 1: Screen shot of single-user presentation ap-
plication

fer to a suite of scripts implementing a complete, stand-alone
system, and the word “feature” to refer to a small enhance-
ment of an existing system. We use the term “extension”
when we do not care to make this distinction.

2.1 Single-user presentation

Instructors have begun to note the advantages of using
Tablet PCs, with computer projectors, over whiteboards,
overhead transparencies, or PowerPoint presentations. A
projected image is usually easier to see than a whiteboard
or blackboard, especially in a large classroom. Compared to
overhead transparencies, presentations made using Tablet
PCs are easier to correct as well as to save and post. Pre-
pared presentations, such as PowerPoint, are too static for
a class (even as they may be ideal for more formal presenta-
tions), but they do not exclude the use of Tablet PCs; many
instructors find that the ideal solution is to use ink annota-
tions over sparsely-populated PowerPoint presentations [8].

The basic features of a presentation system vary little
among the systems cited earlier. It must provide for import-
ing prepared presentations (such as PowerPoint or PDF),
changing pen colors, erasing, adding new pages, printing,
and so on. It is important that the user interface not be clut-
tered; giving a presentation is very different from preparing
a document, and the typical layout of small buttons, mul-
tiple toolbars, and drop-down menus is too complex and
cumbersome. Tablet PC-based presentation systems favor
large buttons controlling a limited set of features.

A screenshot of the SLICE presentation application is
shown in Figure 1. In addition to the standard features
mentioned above, we have added a “laser pointer,” which
draws a bright red mark that disappears when the pen is
lifted from the screen, and a “clone slide” feature, which
makes an exact copy of the current slide (useful, for exam-
ple, when hand-simulating an algorithm). The “clone slide”
button has the additional feature that it copies to the new
slide only the selected ink on the current slide, if the user
has selected ink.

2.2 Networked presentation

Researchers in this field envision a future in which both

(,er\w [(++

g Viv ful
A g C)
T A il f 0 fent < T
7 yed 4O § {03

b D2 CF e
R o << p’/ o]
& {0 jc ;-
C+ XfWﬂDo; | ever
><4>g(\,'

&
= 1
B Ouper
]

€ 1= _a E % 1S “‘e“m i Bes Q) IOE

1 LAY

Figure 2: Screen shot of classroom interaction ap-
plication

teachers and students are equipped with networked, pen-
enabled computers, and they are exploring the possibilities
that such an environment presents. It is for this kind of ex-
ploration that we have created an extensible platform. Net-
worked features, like those of the single-user application, are
programmed using Python scripts. Thus, many types of in-
teractions can be added with relative ease.! Here we discuss
a particular, and fairly modest, set of features that we are
currently using. (See section 4 for a discussion of our future
plans.)

Figure 2 gives a screen shot of such an application. It
is very similar to the single-user application, with the ad-
dition of a few buttons. In this application, the lecturer’s
initial set of prepared slides, if any, are transmitted to the
students as they sign on. Specifically, once the lecturer has
loaded any initial slides, she clicks the “start class” button;
students who have signed in get the slides, and any students
who arrive later get the same set of slides. However, the lec-
turer’s notes during the lecture are not sent to the students.
(This is not a technical limitation but rather a pedagogical
decision, implemented in scripts.) The lecturer may, on the
other hand, send entire pages to all the student machines by
clicking one of two buttons: “Poll” and “Exercise.”

Polls work as follows: On any slide, the lecturer can add
choice buttons by clicking the “Vote” button. (Figure 2
shows a page after the instructor has added several such
buttons, in the southeast part of the screen.) She can then
click the “Poll” button. The page will be sent to the student
machines as is, with one difference: a “Send Vote” button
will appear at the bottom of the page. At the same time, a
frame displaying the results of the poll will appear on the in-
structor’s machine; it will be updated as students click their
“send vote” buttons.

The “start exercise” button is simpler. Exercises are writ-
ten work that the instructor wishes the students to do, such
as filling in the values in an array. The difference between
an exercise and a poll is that an exercise is not graded in
real time; that is, the instructor does not see the students’
work (but see section 4 for more on this issue). Thus, giv-

'Relative, that is, to programming them directly in C# us-
ing the Ink API.

Bl

P 25+iyspace, 207, 50, FH, yspace,

1=

Figure 3: Screen shot of code review application

ing an exercise is simply a matter of sending a page to the
students.

Another feature of this application is that there is actually
a third party in the classroom: the display. In order that
the instructor may look at private information, his tablet
is not attached directly to the computer projector. Rather,
the instructor’s ink annotations are sent to another machine
for display. (Another benefit of this arrangement is that
the instructor’s Tablet is not tethered to the cable for the
display.) We note again that this arrangement is all under
control of Python scripts, allowing it to be modified easily.

2.3 Code review

Our department has a required class for juniors, entitled
“Programming Studio,” in which students meet each week,
in small groups, to review each other’s code [13]. We have
developed a SLICE application that allows the students to
jointly view and annotate source files.

Figure 3 gives a screen shot of this application. Users
open files using the “open folder” button. These are then
transmitted to all other participants. The files are listed
in tabs just below the top row of buttons. Each user’s ink
annotations are transmitted to all other users. The “Global
comments” button pops up a separate window into which
comments can be added that do not apply to specific parts
of any of the files.

This application is under active development. We do not
know what set of features will best facilitate discussion of
each student’s code. Some features that we intend to im-
plement soon include ways of distinguishing among com-
ments of different users (perhaps by ink color), and a facility
to print only comments rather than entire files (since most
parts of every file are unannotated). Future plans include
the addition of roles, such as author, scribe, and reviewer,
as described in McConnell [5], the course textbook; each
role would have a distinct set of capabilities. Another en-
hancement is the ability to record “obligations,” which are
promises made by the author of the code; tracking such
obligations is important in this class, as a large part of a
student’s grade is determined by his diligence in rewriting
his code from one week to the next.

1 D | ACas

a0

&

Figure 4: Exam-grading application

2.4 Exam grading

In many, if not most, CS departments, exams are graded
as follows: Each person involved in grading is assigned a
group of questions, which may together occupy several pages.
The grader takes a pile of of exams, scores those questions,
records the scores on the front of the exam booklet, and then
returns the pile and picks up another. When all questions in
a group of exams have been graded, the grades are summed
and the score entered on a computer. Normally, grades for
individual questions are not entered, because of the extra
work involved.

Transferring this procedure to a Tablet PC, the separate
data entry process is avoided. This has the immediate effect
that the instructor can see averages for each question, as well
as the total, providing a better picture of where the students
had difficulties than when only total scores are recorded. It
can also ease the graders’ work, in that there is no flipping to
the front of the exam and no final summing up of scores. (An
exam-taking application could further facilitate this task, as
multiple-choice questions could be answered using a dialog
box, and graded automatically; we have not implemented
this application, mainly because multiple-choice questions
are rarely used in our classes.)

A screenshot from this applications is shown in Figure 4.
The exam author has provided some meta-data about the
exam, giving, for each question, its page number and total
points. When the grader switches to a page, buttons for
the questions on that page appear in the upper-right of the
screen. When the grader has determined the score for a
question, he clicks the button and a numeric keypad pops
up, with which the grade is entered. When all questions
have been scored, the system fills in the total grade on the
front page of the exam, and writes it to a file. Clicking the
“next” button fetches the next exam.

3. EXTENSIBILITY IN SLICE

The SLICE architecture may be considered as an extreme
implementation of the Model-View-Controller paradigm, with

this additional feature: the model can be manipulated by
scripts programmed by the user.

To be more specific, SLICE is an example of what we call
an “explicit state” system. The entire state of the system
is stored in a single data structure, whose access operations
are few and simple. The state includes all slides, ink strokes,
and intermediate results — not just what is showing on the
display. (The state data structure is certainly liable to be
large, but there is no reason why it need be complicated.)
Scripts use the state operations to change the state, poten-
tially causing the display to change. Scripts are invoked
when a button is clicked, or on other user events such as an
ink stroke being drawn.

The distinguishing feature of this architecture is that the
state is represented by a simple data structure with a few
operations. (Specifically, it is represented as a tree, as we
describe shortly.) This has several advantages for user-level
extensibility. To extend an existing application, the user
needs to know the structure of the state for that application
(as determined by the original author of the application),
and a small number of state operations. By contrast, with
a conventional architecture, the user needs to understand
many classes and their interfaces, both those written specif-
ically to represent the state of this application and those
provided by the underlying system (.NET, in our case).

Further, by eliminating “hidden state,” some operations
that might cause problems for extension-writers work auto-
matically. One example is saving: the document consists of
exactly what is in the system state; no matter what data
the extension-writer adds, it will be saved when the system
state is saved. Another example is undo/redo; since all state
changes of interest are stored in one data structure, the sys-
tem need only record each operation on this data structure.
Similarly, replaying a session, such as a lecture, is a straight-
forward matter of repeating the sequence of operations on
this state.

We will not attempt to supply full details here, but we can
give enough details to show a simple example and, hopefully,
have it be understandable.

The data structure we use for the state is a tree whose
nodes are labelled with a name and a set of attribute/value
pairs. The reader will note that this data structure corre-
sponds precisely to XML trees. Indeed, we use XML as our
external representation, and the internal representation is
nearly isomorphic to it. In the following discussion, we will
use XML format to show the internal state.

Consider the presentation application. The root of the
tree has a child named Lecture, which has a child named
Slides, which in turn has a list of children each labelled
InkPanel:

<Lecture>
<Slides>
<InkPanel> ...
<InkPanel> ...

</InkPanel>
</InkPanel>

</Slides>
</Lecture>
The InkPanel nodes are the individual slides in the lec-
ture; their children will consist mainly of Stroke nodes rep-
resenting the ink strokes drawn by the instructor. InkPanel
is a built-in node type representing a panel on which one
can add ink annotations (as well as placing buttons, text
boxes, etc.). Lecture and Slides are not built in; their

significance lies only in how scripts use them to navigate
through the tree. The order of slides in this application is
given by their order within the list of children of the Slide
node (that is, there is no additional SlideNumber attribute
in these nodes). Exactly one InkPanel node has attribute
Visible equal to True, while the others must have Visible
= False. Thus, if we are on page one, the above tree would
actually be:

<Lecture>
<Slides>
<InkPanel Visible=True> ...
<InkPanel Visible=False> ...

</InkPanel>
</InkPanel>

</Slides>
</Lecture>

3.1 Script examples

Bear in mind that the underlying system knows nothing
about presentations or sequencing of slides. The scripts de-
termine the sequence implicitly by the actions of the Next
and Previous buttons. Consider the Next button (which
is represented by a Button node in a separate part of the
tree, which we have not shown). The script associated with
this button has a simple job: Get the Slides node; find its
unique visible child; find that node’s successor, if any; make
the visible node invisible and make the successor visible.
Thus, the script fo the Next button is:

slides = Root.GetChild("Lecture").GetChild("Slides")

currslide = slides.FindChildByAttribute("Visible", "True")

nextslide = currslide.GetRightSibling()

if nextslide == None: return
currslide["Visible"] = "False"
nextslide["Visible"] = "True"

This script uses several tree-manipulating operations —
GetChild, FindChildByAttribute, and GetRightSibling —
whose meanings are, we trust, self-explanatory. The assign-
ments in the last two lines give values to the Visible at-
tribute in each node. There are all together perhaps twenty
such operations that comprise the bulk of all the scripts that
implement the applications described in section 2.

To give one more example, consider the “new page” but-
ton, which adds a blank slide after the current slide. The
script finds the current slide as above, then creates a new
InkPanel node, and adds it to the Slides node:

slides = Root.GetChild("Lecture").GetChild("Slides")

currslide = slides.FindChildByAttribute("Visible", "True")

newslide = tree("InkPanel", ["Visible", "True"l, [1)
currslide["Visible"] = "False"
slides.InsertAfter(newslide, currslide)

The tree function used here creates a tree with a given
name, a list of attibutes, and a list of subtrees. In addition,
this script uses tree operation InsertAfter, which inserts a
child node after another child.

In providing for extensibility, our goal is to encourage
experimentation. Even the functionality of page changing,
which we have just illustrated, admits many variations. The
presentation application has only one kind of navigation: go-
ing forward or backward by one slide. Many instructors will
recognize that this is not always sufficient; often one wants
to go quickly to a slide at a greater distance. Simple but-
tons that move forward or backward by multiple slides might
suffice. Bringing up a page of thumbnail views might be a

good solution. If there are only a small number of slides
that might be the target of non-local navigation, as is of-
ten the case, a method of marking slides as “important” and
putting those in a drop-down menu might be easier to use.
These are the kinds of ideas that our model is intended to
be helpful in implementing.

3.2 Networked applications

The pedagogical features that most interest us involve the
scenario in which students are equipped with Tablet PCs,
creating a fully interactive environment. Our architecture
also facilitates the creation of such features. In our model,
users communicate messages which are just trees with name
“NetworkMessage” and a “MessageType” attribute. A han-
dler, also written in Python, interprets messages as they
arrive. In practice, messages often have the form “here is a
piece of my state that you should copy into your state;” this
occurs, for example, when one user sends an ink stroke to
another. These are simple to implement: the sender copies
the subtree into a message with message type “AddTree”, and
with another attribute describing the location (e.g. Slide-
Number=12); the receiver finds the location and appends the
tree.

3.3 Summing up

Obviously, claiming that all scripts are easy to write would
be tantamount to claiming that all programs are easy to
write, since there is no bound on the potential complexity
of an extension. We earlier gave a line count providing a
general idea of the amount of code needed to implement
functionality. We believe that the process of adding exten-
sions — in which scripts can be changed or added by users in
the field — and the learning curve for doing so — in which a
small set of tree operations is used in place of a large set of
interfaces — will facilitate the creation of features by users
who would blanch at the idea of modifying a 10,000-line C#
program.

4. CONCLUSIONS AND FUTURE WORK

We have described a new system for developing Tablet
PC applications. The system is designed to facilitate exper-
imentation with pedagogical features. We hope this system
will help researchers converge on principles of design of such
features. Another area in which we hope our system can
contribute is the development of topic-specific interactive
Tablet PC applications.

Aside from general enhancements to the framework and
development of new features, we are currently concentrating
on a potential use of Tablet PCs that appears not to have
received very much attention. In a networked classroom, the
teacher may be able to learn much about the “state of mind”
of the class by observing the students’ note-taking behavior.
We are exploring the notion of a “teacher’s dashboard,” a
summary display of this information. The dashboard might
show thumbnails of the screens of all or a selected set of stu-
dents; however, this presents a difficult visualization prob-
lem. An alternative is to focus on physical aspects of the
students’ writing, such as speed and quantity of ink. Either
way, the data can be gathered unobtrusively, and may give
the teacher an idea of which students are out of step with
the class, or whether the entire class has become disengaged.

The SLICE system, including the four applications de-
scribed in this paper, and full documentation, can be down-

loaded from our website, slice.cs.uiuc.edu.

5. ACKNOWLEDGMENTS

Contributors to the current code base of SLICE include
Mike Woodley, Matt Klupchak, Alex Kurilin, Victor Huang,
and Abdullah Akce. Support for this work was provided by
Microsoft under the 2005 Tablet PC Technology, Curricu-
lum, and Higher Education program. The authors wish to
thank the anonymous SIGCSE reviewers for their very help-
ful suggestions.

References

[1] Anderson, R. J., Anderson R., Simon, B., Wolfman, S.
A., VanDeGrift T., Yashuhara, K. Experiences with a Tablet
PC Based Lecture Presentation System in Computer Science
Courses. Proc. 35th SIGCSE. Norfolk, Va. 2004. 56—60.
[2] Berque, D. Pushing Forty (courses per semester): Pen-
computing and DyKnow tools at DePauw University. in
The Impact of Tablet PCs and Pen-based Compouter
on Education: Vignettes, Evaluations, and Future
Directions. Purdue University Press. 2006.

[3] Knuth, D.E. The TeXbook (Computers and Type-
setting, Volume A). Addison-Wesley. 1984.

[4] Lord, S.M., Perry, L.A. Tablet PC — Is it worth IT?
A preliminary comparison of several approaches to using
Tablet PC in an engineering classroom. Computers in Edu-
cation Journal, 42(3). July—Sept. 2007. 66-75.

[5] McConnell, S. Code Complete, Second Edition. Mi-
crosoft Press. 2004.

[6] Peiper, C. Warden, D., Chan, E., Campbell, R., Kamin,
S., and Wentling, T.L. Applying Active Space Principles to
Active Classrooms. Workshop on Mobile Peer-to- Peer Com-
puting at Conf. on Pervasive Computing (PerCom 2005).
Hawaii. March, 2005.

[7] Peiper, C., Warden, D., Chan, E., Capitanu, B., and
Kamin, S. E-Fuzion: The Development of a Pervasive Ed-
ucational System. Proc. 10th Intl. Conf. on Innovation
and Technology in Computer Science Education (ITiCSE).
Lisbon, Portugal. June 2005.

[8] Price, E. Simon, B. A survey to assess the impact of
Tablet PC-based active learning: Preliminary report and
lessons learned. In The impact of Tablet PCs and Pen-
based Technology on Education (WIPTE 2007). Pur-
due U. Press. 2007. 97-105.

[9] Stallman, R. M. EMACS: The Extensible, Customizable,
Self-Documenting Display Editor. MIT Artificial Intelli-
gence Laboratory. AIM-519A. 1979 (updated 1981).

[10] Wentling, T.L. Parkz, J., C. Peiper, C. Learning gains
associated with annotation and communication software de-
signed for large undergraduate classes. J. of Computer As-
sisted Learning 23. 2007. 36-46.

[11] Wilkerson, M., Griswold, W.G., Simon, B. Ubiquitous
Presenter: Increasing student access and control in a digi-
tal lecturing environment. Proc. 36th SIGCSE. St. Louis.
2005. 116-120.

[12] Willis, C. L., Miertschin, L. Tablet PC’s as instructional
tools or the pen is mightier than the 'board!. Proc. 5th
Conf. on Information Technology Education (CITC5 ’04).
Salt Lake City, UT. 2004.

[13] Woodley, M., Kamin, S.N. Programming Studio: A
Course for Improving Programming Skills in Undergradu-
ates. Proc. 38th SIGCSE. Covington, Ky. 2007. 531-535.

