
Supporting active learning in large classrooms using pen-
enabled computers

Sam Kamin Wade Fagen
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

{kamin, wfagen2}@illinois.edu

ABSTRACT

Employing active learning methods in a large
college class presents a variety of challenges.
One of the most important is that it is difficult
for the lecturer to properly calibrate the learning
activities. We present our experience in such a
class – an advanced, required class in Computer
Science, with an enrollment of 150 students –
where we employed a computer system based
on pen-enabled computers to provide real-time
feedback to the professor. The system helped to
keep the students engaged, while having them
engage in realistic, homework-like problems in
the classroom. We describe the system and our
experience with it.

KEYWORDS

Software Framework, Active Learning Tool,
Collaborative Learning Tool

1. INTRODUCTION

The implementation of active learning in

large college classes poses special challenges
[1]. Some of these can be addressed with
technology. Electronic voting systems
(``clickers'') are becoming quite popular; these
involve students in solving multiple-choice
problems in the class, usually collaboratively.
This keeps students more engaged in the class --
- which in the modern college classroom has

become a difficult task for all but the most
entertaining instructors. However, in some
circumstances, clickers are difficult to employ.
In this paper, we describe one such
circumstance, and discuss how we employed
more advanced technology, with richer
feedback, to enhance an active learning course.

The first author teaches a senior-level
course in Computer Science at the University of
Illinois, CS 421, Programming Languages and
Compilers. The course is required for CS
majors, and enrolls about 150 students. We
wanted to employ an active learning approach,
in which a significant portion of the class time
would be devoted to student problem-solving.
The class exercises should be of the same kind
that the students would do for homework and on
exams (including programming). Furthermore,
we wanted the discussion of these exercises to
be driven by the difficulties the students actually
experienced. This raised another problem:
Courses at this level --- perhaps especially in
Computer Science --- are constantly evolving.
We have no reliable history telling us what
material will be most difficult for the students,
or in what way. So, we wanted to assigned
realistic, long-form exercises in the class, and
see what the students were doing. These were
not multiple choice questions; clickers would
not solve our problem.

The traditional solution is to assign the
exercises, and then walk around the class during
the few minutes the students were engaged in
them, looking over the students' shoulders.
However, this is simply impractical in a large
lecture hall, for many reasons. It is impossible to

reach students who are not sitting on the aisles
without disrupting other students; time
constraints preclude reaching any students at the
back of the class. The students' natural writing
posture makes it difficult to see what they are
writing without making them stop their work.
More fundamentally, students are often shy
about showing their work; having a professor
look over their shoulder seriously impedes their
ability to do the exercise. And besides, this
would lead to a mode of interaction in which the
professor offers help to one or maybe two
students, rather than obtaining an overall sense
of the classroom; this is fine in a small
classroom, where every student will eventually
get that kind of attention, but in a large class, the
professor needs to focus on the class as a whole.

We solved our problem by developing a
system that runs on wirelessly-networked, pen-
enabled devices, on which some subset of the
students solve the exercises (while the rest work
on paper). The instructor can view the work of
that subset (currently four students, changing
constantly during the class), and display it to the
class. We developed this system, which runs on
Windows-based Tablet PCs [2] and Android
devices [3], in our SLICE development
framework [4,5], which allows us to develop
applications for both platforms at once. We
have used the system in every class in the
current semester.

The benefits of this approach are:
(1) The exercises are not confined to multiple

choice, or even short answer. They are, as
we intended, simple versions of the
problems students will confront in their
homework.

(2) The students answer the questions in the
most natural way, by writing out the
solutions by hand.1

1 We have heard it said that students no longer write by
hand, but instead type; and we have even heard that this
especially true of Computer Science students. In our
experience, this claim, which is made mainly by non-CS
faculty, is completely divorced from reality, as one could

(3) Students have a sense of participating
because, when they are using the tablets ---
and every students gets the opportunity,
because the tablets change hands after every
exercise --- their work is often shown to the
entire class.

(4) Because the professor is viewing the
students' work remotely and anonymously,
the intimidation factor is reduced.

(5) As part of showing a student solution to the
class, the professor may write additional
details or correct the student work. Starting
a discussion with the students, based on the
work of a peer, reinforces the sense of
participation.

(6) Above all, the original goal is achieved: the
professor can see exactly what the students
are doing and what difficulties they are
encountering, by watching them solve actual
problems in real time.

In this paper, we describe the class and the
computer system we developed in detail, and
relate our experiences in the classroom.

2. THE COURSE

CS 421, Programming Languages and

Compilers, is a required course in our CS
curriculum, normally taken by students in their
senior year. It is taught in twice-weekly, 75-
minute lectures, in a large lecture hall;
enrollment is approximately 150 students. The
course material is generally considered quite
challenging. Homework is given weekly and
usually involves programming.

The goal of each lecture is mainly to
teach the students the new skills needed to
complete that weeks' homework. Accordingly,
the in-class exercises are versions of the same
kinds of problems as in the homework, often
building up from much simpler versions of

see by visiting any CS classroom. Anecdotally, the first
author has long banned laptops from his classes; out of
hundreds of students, only two have ever claimed that this
disrupts their note-taking

those problems, which can be solved completely
in the class, to fuller versions that can only be
solved partially. We hope to leave students in a
good position to complete the homework. For
example, the second assignment of the semester
is to write functions over linked lists using
recursion, in the programming language OCaml
[6]. The in-class exercises that week built up
from simple non-recursive programs on lists, to
complicated recursion. Later in the semester,
we talk about ``compilation schemes'' – rules for
generating machine language code for various
high-level language constructs – and the
exercises involve writing these rules; we start
with simple examples that involve little more
than copying examples given by the instructor,
to creating rules from scratch.

The exercises are included within the
class lecture slides. The slides containing
exercises are printed before class and handed
out to all students. (The lecture slides
themselves are posted online before class, but
very few students print those ahead of time.)
Examples of exercises, and student answers, are
given in section 4.

Figure 1: Lecturer’s View

3. A MONITORING APP

To allow the instructor to monitor

students' work on the in-class exercises, we used
our SLICE [4,5] framework to build an
application for pen-enabled computers. The

application runs on Tablet PCs and on Android
devices; in SLICE, the application code is
exactly the same for both kinds of devices. The
professor has a Tablet PC on which the lecture
is given, and can view the work of students on
other Tablet PCs and Android tablets.

At the start of each class, we distribute a
set of computers (four, at present) to students
randomly.2 All the professor’s notes, including
the exercise slides, are transmitted to those
machines wirelessly. We ask the students who
received the tablets to solve the first exercise on
them, and then pass them along to someone else.
Classes usually have at least half a dozen
exercises, so a significant portion of the class
will use the tablets at some time during the
class.

Figure 1 shows the instructor’s version
of the app. It is an ordinary Tablet PC-based
presentation app, with buttons to change pen
colors, erase pen strokes, move to the next slide,
and so on. Most interesting is the set of buttons
near the bottom left, highlighted in the figure.
The ``heads'' button switches the instructor's
machine to monitoring mode, displaying the
first student's tablet (at the same page as the
professor's tablet, that is, the current exercise
page). The arrow buttons next to it move from
student to student. The display icon on the left
displays, on the room display, the page of
whatever student the professor is currently
viewing; this allows the instructor to either
show a good solution or point out an error that
he suspects is common. The student's version of
the app is similar, but with fewer buttons. It
lacks the monitoring buttons, of course, but also
lacks the erase button; students can only erase
by crossing out. This was intentional, so that
the instructor could see the students' false starts.

2 We chose the number four for the most mundane of
reasons: it is the number we can comfortably carry from
our lab to the class. The app can handle any number of
student machines, although there is a real question of how
many response the professor can realistically monitor
during the exercise periods.

Figure 2: Four students doing the same exercise, viewed by the professor.

4. EXPERIENCE

 The application is effective in giving the
lecturer a window on the students' thought
processes. The students seem to enjoy using it,
and will sometimes draw pictures, or write their
answers in a rainbow of colors. (The machines
are very simple and natural to use; we have had
no need to give the students any training on how
to use them.)

Sometimes, the best information comes
from the lack of student responses to an
exercise; if none of the four students is working
on an exercise after, say, one minute of
thinking, that strongly suggests that those
students --- and most likely, almost all the
students --- are confused by the problem. But
one of the benefits of getting this feedback
constantly is that the professor learns over time
how to pace the class, so that he gives fewer and
fewer exercises like that. Or, to put it
differently, he learns how to be so clear and
concrete that students always understand what
he asking of them. Nearly all the time, the

students respond, although at very different
speeds.
 More typical are responses like those
shown in Figure 2, where most of the students
are completing the questions. One student will
get the first part of the problem, and the
professor will use that as the starting point for a
discussion, and so on. (These screenshots show
the students’ final responses, after they have
benefited from the entire discussion.) In
programming classes, it is worthwhile to point
out even trivial mistakes, because these can cost
a lot of time when they sit down to do their
homework.
 Another way the system supports active
learning is that it helps the teacher calibrate the
pace of the exercises and, by extension, of the
course material itself. The best example comes
from the very beginning of the course. Lecture
2 covers basic material that the students have
seen before: writing recursive functions. Either
because they hadn’t done this in some time, or
because they were using a new programming
language, they struggled with these exercises.

Because the material is so fundamental to the
course, the professor changed the schedule of
the course, and continued working on these
problems in class 3. Absent the monitoring
system, it may have seemed that the students
were confused or disengaged, but the system
provided concrete, unignorable evidence that he
needed to spend more time on this topic.
 Having said that, we should add that,
despite the concern voiced in [1], we did not, in
the end, cover less material than in previous
semesters. We are certain of this because we
can compare the exams. What we did was to
jettison some “filler” material, leaving only
material that represents concrete skills that can
be tested. We view this, in itself, as a positive
contribution of the monitoring system.

5. CONCLUSIONS

The essential thing in employing active
learning is that the activities in which students
engage should be challenging but doable.
Careful calibration of the exercises is achievable
if either the topic is well-studied and the way
that students learn it are well understood, or if
there is a tight feedback loop between students
and instructor in the classroom. Neither of these
conditions obtain in large college classes.

We have presented a system in which an
instructor can closely monitor the work of a
subset of the students in a class, and thereby
create a facsimile of this tight feedback loop.
This system uses wirelessly-connected, pen-
enabled computers that are distributed to
students randomly at the start of class, and move
around during the class. The instructor,
employing a networked tablet computer, can
switch from lecturing mode to monitoring mode
at will. When the students might benefit from
seeing the work of another student, the
instructor can display it on the room display.
The system was developed using the SLICE
framework, which greatly simplifies
development of applications like this one.

 In the end, perhaps the greatest benefit
of the system is that the professor gets a very
clear picture of what the students are getting
from the lecture. It forces the professor to focus
less on what he or she is teaching and more on
what the students are learning. And that is
good for everyone.

REFERENCES

[1] Charles Bonwell and James Eison. Active
Learning: Creating Excitement in the Classroom
(J-B ASHE Higher Education Report Series
(AEHE)). Jossey-Bass. 1991.

[2] Microsoft Tablet PCs, Wikipedia entry:
wikipedia.org/wiki/Microsoft_Tablet_PC

[3] Android, Wikipedia entry:
wikipedia.org/wiki/Android_(operating_system)

[4] S. Kamin, M. Hines, C. Peiper and B.
Capitanu. "A System for Developing Tablet PC
Applications for Education." in Proceedings of
the 39th SIGCSE technical symposium on
Computer science education. 2008.

[5] Wade Fagen, Sam Kamin. “A Cross-
Platform Framework for Educational
Application Development on Phones, Tablets,
and Tablet PCs.” in Proceedings of the 2012
International Conference on Frontiers in
Education: Computer Science & Computer
Engineering (FECS 2012). Las Vegas, Navada,
July 2012.

[6] OCaml website: caml.inria.fr/ocaml/

