

A Cross-Platform Framework for Educational Application
Development on Phones, Tablets, and Tablet PCs

Wade Fagen Sam Kamin
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

{wfagen2, kamin}@illinois.edu

ABSTRACT

We describe a major extension of the SLICE
framework, called SLICE 2.0. This new
framework allows developers to program an
application once and deploy the app natively on
all major PC platforms (Windows, Mac, and
Linux), tablet PCs, and Android based cell
phones and tablets. The framework specifically
provides functionality to create pen- and touch-
enabled applications focused on active and
collaborative learning. We introduce two
classes of applications that are already in use in
classrooms using the SLICE 2.0 framework and
discuss several hardware devices running the
SLICE 2.0 framework.

KEYWORDS

Software Framework, Active Learning Tool,
Collaborative Learning Tool

1. INTRODUCTION

In recent years, a number of researchers

have studied the effectiveness of active and
collaborative learning technology in classrooms
[1, 2]. These technologies often make use of
laptop computers, tablet PCs, iOS or Android-
based cell phones and tablets, and electronic
voting systems (EVS) [3]. Many higher-
education institutions have adopted various
forms of EVSs, including i>Clickers,

eInstruction clickers, and others [4]. Case
studies and research alike have shown EVSs to
be effective, though often note limited
functionality as a drawback to complex active-
learning exercises [3].

As a contrast to EVSs, researchers have
developed and studied active learning
applications on pen-enabled (tablet PCs) and
touch-enabled (cell phones and tablets) devices
[3]. Nearly all research we have found uses a
single, custom-developed application for the
task at hand running on a homogeneous
platform.

Realizing that the modern classroom is
filled with cell phones, tablets, laptop
computers, and other intelligent devices, we
have developed and successfully deployed a
cross-platform, cross-device framework for
developing applications primarily focused on
educational use. The original framework,
SLICE, or Students Learn In Collaborative
Environments, was a software framework
originally developed in 2006 and has been
continually used in classrooms since then [5].
The applications originally developed using the
SLICE 1.0 framework allowed the quick
development and deployment of educational
applications on Windows-based Tablet PC
devices.

In this paper, we introduce SLICE 2.0, a
significant milestone in the development of the
SLICE framework. SLICE 2.0 builds on the
SLICE framework by preserving nearly the
entire existing API that developers have used to
develop SLICE applications while allowing
applications developed on SLICE to be

deployed on heterogeneous hardware. In this
paper, we will discuss some of the hardware
devices on which SLICE 2.0 has been deployed
and briefly introduce several of the successful
applications that have leveraged the framework.

Supported Platforms
Windows XP, Vista, or 7
Windows Server 2000, 2003, or 2008
Mac OS X 10.6+
Linux supporting Java 1.5+
Android 2.2+
User Scripts
JavaScript
User Interface Design
XML

Table 1: Overview of Slice requirement

2. FRAMEWORK

The SLICE framework is based on the
Model-View-Controller [7] design pattern,
pushed to an extreme: The model is an XML
tree that includes interface element (buttons,
panels, ink strokes). The controller – that is, the
code that is invoked when events like “ink
stroke entered” or “button clicked” or “message
received from another computer” occurs – does
nothing but make changes in the model. Unlike
most versions of MVC, this code does not have
to indicate whether those changes in the model
must trigger changes in the “view;” that is
handled automatically. Thus, each event
triggers the execution of a small piece of code
that changes a model whose structure is quite
simple. These small pieces of code are written
in JavaScript; using a scripting language
provides well-known advantages of convenience
and short development times (for small scripts).

This structure allows for a high level of
portability by separating application-specific

functionality (the scripts that modify the model)
from platform-specific functionality (capturing
events and rendering the various components of
the model). The latter is contained in the “core”

Figure 1: Two student instances of the SLICE Lecturer
Application on heterogeneous platforms. Left: Android

tablet; Right: Windows 7 Tablet PC.

code written once for each platform, while the
former is the per-application code that runs on
all platforms.

To an application programmer, SLICE
provides a rich set of callbacks to run the
JavaScript code the programmer designed.
Additionally, SLICE provides over eighty
functions available to application developers to
interact with the “model” and “view”. For
example, the XML necessary to show a
Button, and register a callback when the
Button is clicked by the user, is simply the
following:

<Button OnClick=”ButtonClicked” />

The JavaScript function that is invoked when a
button is clicked by the user could then be:

/* ButtonClicked(): Invoked by SLICE
 when the user clicks the button
 on the screen. */
Function ButtonClicked() {
 Sender[“Text”] = "Clicked";
}

In the example above, the text displayed on the
button that was clicked will be modified to the
string “Clicked”. Detailed documentation on
every callback, API call, and variable is
provided on the SLICE website [6].

3. APPLICATIONS

 Since 2006, over a dozen known
applications were developed using the SLICE
framework. In the past year, we have deployed
two notable classes of applications to meet
specific educational objectives based on what
we have learned. This paper will introduce
these applications and how they are in use
today.
 These applications are samples of what
can be developed and focus on specific learning
objectives and needs of a class. We encourage
the reader to use these pre
applications themselves or develop their own
application using the SLICE framework for
cross-platform deployment.

3.1. Lecturer Application

The “Lecturer Application” is a g
phrase describing the most broadly used SLICE
application since 2006. As part of this
application, small changes are made nearly
every semester to meet instructor feedback and
new educational goals. The original motivation
came from instructors noting the advantages
having pen input on projected slides, as
compared with using a whiteboard,
transparencies, or PowerPoint presentations.
With that in mind, the original Lecturer
Application provided a way for PowerPoint or
PDF slides to be loaded in
application on a pen-enabled Windows tablet.
The instructor would connect his or her tablet up
to the projection system and could write, draw,
or otherwise annotate their slides with their
tablet PC [7, 8].

In classrooms with a house computer,
the Lecturer Application can
“networked mode.” The display on the
lecturer’s tablet is wirelessly cloned on the room
display, allowing the lecturer to move about the
classroom, tablet PC in-hand, and even
students to use the tablet to write answers to

Since 2006, over a dozen known
applications were developed using the SLICE

. In the past year, we have deployed
applications to meet

specific educational objectives based on what
we have learned. This paper will introduce

and how they are in use

These applications are samples of what
can be developed and focus on specific learning

ctives and needs of a class. We encourage
the reader to use these pre-developed
applications themselves or develop their own
application using the SLICE framework for

3.1. Lecturer Application

The “Lecturer Application” is a generic
phrase describing the most broadly used SLICE
application since 2006. As part of this
application, small changes are made nearly
every semester to meet instructor feedback and
new educational goals. The original motivation

ting the advantages of
on projected slides, as
using a whiteboard,

PowerPoint presentations.
With that in mind, the original Lecturer
Application provided a way for PowerPoint or
PDF slides to be loaded into a SLICE

enabled Windows tablet.
The instructor would connect his or her tablet up
to the projection system and could write, draw,
or otherwise annotate their slides with their

In classrooms with a house computer,
can be run in

The display on the
lecturer’s tablet is wirelessly cloned on the room

rer to move about the
and even allow

students to use the tablet to write answers to

Figure 2: An iteration of the Lecturer Application in use
in a classroom using a separate dashboard display.

(a): An on-going lecture in a CS2
(b): The dashboard display monitor.

(c): The dashboard display visible to the lecturer.

questions. This application proved to be a
useful tool in creating an active learning
environment and a more collaborative
classroom.

With SLICE 2.0 in mind, this application
was extended several more times focu
increasing active learning. We are currently
studying three specific variations on
application. All three variations
classrooms where some students have a SLICE
enabled device and actively participate in the
lecture by taking notes or answering problems
proposed by the lecturer.

The first application
to constantly monitor a subset of students. It
employs an additional display
location where the lecturer, but not the students,
can see it. That display
of the current students’ notes. Figure 2
dashboard with four students’ work displayed
The instructor can gauge student progress on a
question, answer questions posed by the student
through the tablet, or gauge un
topic by the students’ notes.
can be helpful in an active learning environment

Figure 2: An iteration of the Lecturer Application in use

in a classroom using a separate dashboard display.
going lecture in a CS2-style course.

(b): The dashboard display monitor.
dashboard display visible to the lecturer.

questions. This application proved to be a
useful tool in creating an active learning
environment and a more collaborative

With SLICE 2.0 in mind, this application
was extended several more times focusing on
increasing active learning. We are currently

specific variations on this
. All three variations focus on large

classrooms where some students have a SLICE-
enabled device and actively participate in the

notes or answering problems
proposed by the lecturer.

The first application allows the lecturer
monitor a subset of students. It

an additional display, placed in a
location where the lecturer, but not the students,

display shows a dashboard of all
rrent students’ notes. Figure 2 shows a

dashboard with four students’ work displayed.
instructor can gauge student progress on a

question, answer questions posed by the student
through the tablet, or gauge understanding of a
topic by the students’ notes. This application
can be helpful in an active learning environment

Figure 3: A student view of a Lecture Application where
a student’s work has been appended by the instructor.

(see Figure 2), but it is mainly intended for a
more traditional classroom; the primary
feedback to the lecturer is the notes that students
are taking during the lecture.

Another application focuses on
providing the instructor feedback immediately
after the class, which can then be used to guide
subsequent classes. Instead of a student’s work
being shown to the instructor, the student uses a
special interface to leave questions on the slides.
At the end of lecture, the instructor can review
those questions.

The third application addresses classes
that employ active learning, where a
considerable amount of class time is devoted to
student problem-solving. This is similar to the
first application (the “dashboard”), but the
dashboard resides on the lecturer’s own tablet,
and student work can be seen only by changing
modes. In “monitoring mode,” the lecturer can
scroll through the students who are using tablets
and see their progress on the current in-class
exercise. The instructor may then write directly
on a student’s slide privately (in effect, sending
a message to that student), but the more
important feature is that he can show a student’s
slide on the classroom display. This use of a
peer’s answer publicly allows for the entire
class to collaborate on an answer with the
instructor being able to fill in errors or
incomplete portions of the student’s answer.

Figure 3 shows a student machine’s display
where the instructor added to the answer the
student originally wrote. More details on this
application are given in [9].

With these applications, we are
exploring the possibilities for enhancing
instruction, especially in large college
classrooms, by using pen-enabled computers. A
major barrier to deployment is the cost of these
devices. SLICE 2.0 addresses this issue by
allowing these apps to run on less expensive
platforms (see section 4). As they are used in
the classroom, we will report significant
successes or failures of these applications in
future work.

3.2. Code Review Application

 During the past several years, an
increasing number of undergraduate programs
have begun to include a course designed to build
a student’s individual programming skills.
Students in the Computer Science department at
the University of Illinois are required to take
such a course, called CS 242: Programming
Studio, detailed in a 2007 publication [10]. The
key feature of this course is the two-hour
discussion section each week, where students
present their programming assignment for the
week. Each student presentation lasts 20-25
minutes and focuses on the program’s design
and source code.
 To facilitate conversations on source
code, each discussion section meets in a lab
equipped with a large TV display. Students
traditionally would connect their own laptop to
the display and discuss their design and source
code by pointing to the display or using their
mouse to highlight specific code regions.

As part of an effort to increase peer
collaboration among the six students
participating in the discussion section and the
discussion moderator, a SLICE application was
developed to aid in code review. The setup of
this application consists of each student having

Figure 4: The Code Review application with several
users highlighting and annotating the source code.

a SLICE-enabled device running the Code
Review application and a server Code Review
application running on the machine directly
connected to the TV display. When a student is
the presenter, his or her source code is displayed
both on the TV display and every other
student’s device.
 During the discussion of the code, the
presenter, any student, or the moderator may
write or highlight on any of the source code
being presented by the presenter. These
annotations are seen by every user and
displayed on the monitor, making this
application a sort of “shared whiteboard” with
the ability to load source code (with syntax
highlighting) as the ``background image’’ on the
whiteboard. We have preformed several
detailed studies on the introduction of this
application into CS 242. Early results suggest
that it has made the code review discussions
more efficient and more engaging. As we
continue to analyze the results, we will report on
the full results of these studies.

4. HARDWARE PLATFORMS

 One of the primary advantages that
SLICE provides that is unique in the space of
educational software frameworks is the ability

to code an application a single time and have it
run on multiple platforms. While not all
applications may be optimal for every platform
(for example, it is difficult to write full
sentences on cell-phone screens), the ability to
give students access to the technology at no
added cost to them or the university may prove
key for wider adoption of sophisticated active
and collaborative learning tools.
 As part of the development of SLICE,
we have tested the framework on a variety of
devices, including:

• Fujitsu Lifebook T730 Tablet PC: With a
Wacom active digitizer on a 12.1” display,
this tablet PC is the easiest to write or
annotate on and is the standard we use for
comparison to other devices.

• Motorola Xoom Tablet: At 10.1”, this
Android tablet is nearly the size of many
tablet PCs. At a fraction of the cost of a
tablet PC, SLICE applications run as
smoothly on the Xoom as the Fujitsu tablets.
However, with only capacitive-touch input,
some users feel drawing and annotating
slides is natural but any form of writing
proves difficult.

• HTC Flyer: Featuring a 7” display and an
active digitizer, this tablet has provided the
benefits of the pen-input at a substantially
cheaper price than tablet PCs. While the
Fujitsu tablet features a slightly smoother
and more accurate active digitizer, the
ability to write on the screen feels much
more natural than writing on the Xoom
tablet. Unlike the Fujitsu, this tablet also
allows for touch-gestures, making tasks like
zooming much more natural.

• HTC EVO 3D: With a duel-core 1.2 GHz
processor, this cell phone is nearly as
powerful as many of the tablets. However,
the small (4.3”) capacitive screen makes
simple touch gestures intuitive but writing
nearly impossible.

Additionally, we are particularly interested in
continuing to follow the development of

Android tablets with active digitizers (devices
similar to the HTC Flyer discussed above). At
as little as a third the cost of a traditional tablet
PC and with much of the same functionality,
these devices may be the future hardware used
in technology-enabled classrooms.

5. CONCLUSION

We have described the SLICE 2.0
software framework for developing cross-
platform applications. The framework allows
for a programmer to program an application
once and deploy the application natively on a
Windows, Linux, or Mac computer, a tablet PC,
and an Android-powered cell phone or tablet.
We have successfully deployed four
applications in classrooms at The University of
Illinois and SLICE is used on a daily basis in
several undergraduate courses in the Computer
Science department.

Building on the experience of over a
dozen existing SLICE 1.0 applications, we
preserved the most useful features while
extending SLICE to run on a heterogeneous set
of devices. Specifically, we described the
classic Model-View-Controller (MVC) design
pattern that is central to SLICE application
development. Application developers need only
to layout the desired graphical user interface
components using XML and program
application logic in JavaScript.

We encourage the reader to try out any
of the applications described in this paper or to
develop their own SLICE application. The
applications described in this paper, the
framework itself, and complete documentation
can be found on the SLICE website at
slice.cs.illinois.edu .

REFERENCES

[1] M. Nakakuni, M. Okumura and S. Fujimura,

"Construction of a Collaborative Learning

Environment through Sharing of a Single Desktop
Screen," in International Conference on Frontiers in
Education: Computer Science and Computer
Engineering, 2011.

[2] C. H. Crouch and E. Mazur, "Peer instruction: Ten
years of experience and results," American Journal
of Physics, vol. 69, no. 9, pp. 970-977, 2001.

[3] K. Nahrstedt, L. Angrave, M. Caccamo and R.
Campbell, "Mobile Learning Communities – Are We
There Yet?," Information Trust Institute, University
of Illinois at Urbana-Champaign, 2010.

[4] G. E. Kennedy and Q. I. Cutts, "Construction of a
Collaborative Learning Environment through
Sharing of a Single Desktop Screen," Journal of
Computer Assisted Learning, vol. 21, no. 4, pp. 260-
268, 2005.

[5] S. Kamin, M. Hines, C. Peiper and B. Capitanu, "A
System for Developing Tablet PC Applications for
Education," in Proceedings of the 39th SIGCSE
technical symposium on Computer science
education, 2008.

[6] SLICE Research Group, "SLICE: Students Learn In
Collaborative Environments," [Online]. Available:
http://slice.cs.illinois.edu/.

[7] R. Anderson, "Beyond PowerPoint: Building a New
Classroom Presenter," Syllabus Magazine, June
2004.

[8] M. Wilkerson, W. G. Griswold and B. Simon,
"Ubiquitous Presenter: Increasing Student Access
and Control in a Digital Lecturing Environment," in
Proceedings of the 36th SIGCSE technical
symposium on Computer science education (SIGCSE
2005), 2005.

[9] S. Kamin and W. Fagen, "Supporting active learning
in large classrooms using pen-enabled computers," in
Proceedings of the 2012 International Conference on
Frontiers in Education: Computer Science &
Computer Engineering (FECS 2012), Las Vegas,
Nevada, 2012.

[10] M. Woodley and S. N. Kamin, "Programming
Studio: A Course for Improving Programming Skills
in Undergraduates," in Proceedings of the 38th
SIGCSE technical symposium on Computer science
education, 2007.

[11] E. Spertus, M. L. Chang, P. Gestwicki and D.
Wolber, "Novel Approaches to CS 0 with App
Inventor for Android," in Proceedings of the 41st
ACM technical symposium on Computer science
education , 2010.

[12] G. E. Krasner and S. T. Pope, "A Description of the
Model-View-Controller User Interface Paradigm in
the Smalltalk-80 System," in System, 1988.

