

EFUZION:
A FRAMEWORK FOR CREATING AN EXTENSIBLE EDUCATIONAL

PRESENTATION AND INTERACTION SYSTEM

BY

BORIS CAPITANU

B.S., University of Illinois at Urbana-Champaign, 2002

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

iii

ABSTRACT

This study presents eFuzion, a classroom presentation and interaction system

aimed at assisting students and instructors in engaging in a more immersive classroom

experience. The pedagogical benefits of eFuzion have been researched for almost four

years at the University of Illinois at Urbana-Champaign, allowing the software to mature

through the three different iterations of the development process. Drawing upon the

experiences of its predecessors, eFuzion v3 breaks away from its more rigid counterparts

by providing developers with an extensible platform and a simple programming model

that can be used to easily customize or extend the application. Extensibility is achieved

through the use of plug-ins (scripts) written in the Python language coupled with the use

of an explicit application state encoding accessible to these scripts. This simple model

permits regular users to assume the role of developers and make contributions to the

software, having complete control of almost every aspect of the application. As a

consequence of the system ’s m odular design, and through the use of the P ython scripting

language, large portions of this application can be ported to other systems without

modification. As an added benefit, this system has been built on top of a framework that

is generic enough to permit many other types of applications to be created with it in a

sim ilar fashion, being restricted only by one’s im agination. A ll these other applications

will benefit from the same extensibility and portability characteristics as eFuzion.

iv

To my beloved mother

v

ACKNOWLEDGEMENTS

 This project would not have been possible without the guidance, patience, and

support of my advisor, Professor Sam Kamin, to whom I owe a great debt of gratitude.

Many thanks also to Chad Peiper for his useful comments on pedagogical issues. Thanks

to the Python.NET and IronPython community for their troubleshooting support. Also

thanks to my good friend Dragos Chirila for providing me with time-saving tips

regarding the Python language. And finally, thanks to my mother, my brother, and my

wife for their support throughout this process.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... vii

CHAPTER 1: INTRODUCTION ...1
 Introduction ...1
 Related Work ..5

CHAPTER 2: MOTIVATION ..7
 Motivation ...7
 Design Considerations ..8

Extensibility ...8
Portability ...9
Scalability ...11

CHAPTER 3: SYSTEM ARCHITECTURE ..13
 Overview ...13
 System State ..15
 Renderer ..25
 Scripts ...32

CHAPTER 4: EXAMPLE ..38
 T he “L ecture” E xtension ...38

CHAPTER 5: CONCLUSIONS ...48

BIBLIOGRAPHY ...50

APPENDIX A: SETTING UP THE BUILD ENVIRONMENT 52

APPENDIX B: SCRIPTING GUIDELINES ..53

APPENDIX C: THE EFUZION API ..54
 XML Primitives ..54
 Rendering Primitives ..63
 Windows Primitives ..65
 Image Primitives ...67
 Application Primitives ..68
 Error-handling Primitives ...68

vii

LIST OF FIGURES

Figure Page

1.1 S tudent’s view of eF uzion v1 ...1

3.1 High-level view of the system architecture ..13

3.2 System flow diagram ..14

3.3 XML encoding of the menus in the initial state of eFuzion 16

3.4 Initial XML state of eFuzion ...18

3.5 System state after loading the “L ecture” script ...19

3.6 Default menu definition (top), extension-augmented definition (bottom) 20

3.7 An example of resource definition ..21

3.8 System state organization diagram ...22

3.9 Example of custom object definition ..25

3.10 Renderer output based on state shown in Figure 3.9 ..26

3.11 Content of script Common.py ...34

3.12 Implementation of the functionality allowing the loading of extensions 36

4.1 Screenshot of the “L ecture” extension in action ...39

4.2 T he code for “eF uzion_init” from L ecture.py ..40

4.3 Screenshot of eF uzion after the “L ecture” extension first loads 40

4.4 T he code for “O penL ecture” from L ecture.py ..42

4.5 T he code for “S aveL ecture” from L ecture.py ...42

4.6 The code for “C olorS elect” from L ecture.py ..44

4.7 The code for “T hicknessS elect” from Lecture.py ...45

4.8 T he code for “InkP en” and “R em ove S election” from Lecture.py 46

1

CHAPTER 1: INTRODUCTION

Introduction

 The eFuzion project was started in Fall of 2001 at the University of Illinois at

Urbana-Champaign by two undergraduate students, as an experiment meant to explore

the use of technology in classrooms. The initial version of eFuzion was used during the

Spring 2002 semester in a pilot course (CS 300) at the university, and ran on regular

laptop computers. Through the use of a custom-built vector graphics drawing library, the

software offered students the ability to take notes and collaborate graphically with the

instructor. The instructor was able to load lecture materials on the computer and annotate

on them using an early type of pen-based input device. All students in the class received

the instructor’s annotations on their m achines and were able to take their own notes using

the keyboard and mouse.

Figure 1.1 - Student's view of eFuzion v1. Areas include: instructor's slides and notes (B), student's
clipboard (A), student notes (C), and graphical newsgroup (D)

2

Figure 1.1 shows a sample of the way the student’s screen was partitioned. Additionally,

the instructor w as able to assess student’s perform ance by sending out polls and quizzes

to the class. The pedagogical value of eFuzion was proven during a comparative study

conducted in the S um m er of 2002 in a live classroom setting w hen the student’s results

showed a half letter grade improvement over a similar classroom taught without this

technology [24]. This experience also emphasized the importance of pen-input in support

of in-class note taking. T o track the “under the hood” evolution of this softw are, this first

version was a monolithic application written in the C# [2] language, featuring the

aforementioned vector graphics drawing library as its most notable component.

 The success of this initial version of eFuzion, coupled with the advent of Tablet

PC technology from Microsoft [25] determined the now established Educational

Technologies Research Group [7] to create a newer version of eFuzion that would

embrace this new digital ink technology, and use it to provide students with a more

natural note-taking experience. The major advantage came from the use of the built-in

active digitizer that had superior sampling rate and included pressure sensitivity,

something that traditional mouse devices lacked. M icrosoft’s digital ink technology

made use of these additional capabilities while also providing vector-based drawing

support, thus bringing the new eFuzion much closer to the natural feel of writing to which

everyone was so accustomed. Under the hood this version was also a monolithic

application that was hard to maintain by other people than its developers, was hard to

extend without knowledge of the entire system, and was not portable at all to other non-

Microsoft platforms. Still, there was no doubt that this newer version of eFuzion was

better: it felt more natural, it incorporated some of the feedback from its users, and fixed

3

a couple of the issues present in the first version. However things w eren’t as perfect as

they could have been. Primarily the problem was that the system was hard to maintain

and extend. The user base was very diverse, so there was no fixed set of requirements

that could satisfy everyone. Different instructors needed different types of tools to aid

their instruction, students w eren’t cohesive in their dem ands of the system , and it w as

completely unfeasible to create an application for each user needing a different feature. It

was clear that a different strategy was needed.

 The main focus that drove the next version of eFuzion, the one being described in

this thesis, was extensibility. The realization was that the best way to please everyone

was to empower the user population with the ability to make their own contributions to

the software, as they are the ones that best know what they want. The same idea can be

found in projects like Emacs [10] or TeX [11] that have enjoyed widespread recognition

for their extensible architectures. F rom the point of view of the classroom “presentation

and interaction system ” the new eFuzion did not offer more functionality than its

predecessors but, most importantly, it offered a solid framework for contributors to

implement any desired functionality. Even though extensibility was the most important

aspect of eF uzion, it w asn’t the only im provem ent over the previous versions.

Portability was also a key consideration during the design of the framework. To

this extent, under the hood the system still used the digital ink technology from

Microsoft, but moved away from the traditional monolithic approach and was

decomposed into a portable, platform-neutral, part and a non-portable platform specific

core. Even though initially the platform-specific core accounted for more than 70% of

the code base, it was expected that with the upcoming features and extensions the

4

platform independent part to become the overwhelming majority of the code. This way,

if the system needed to be ported to another platform, only the small platform-specific

core had to be rewritten for that platform, everything else (the meat of the system) could

be reused without modification. As for its most prominent characteristic, extensibility

was achieved through a symbiotic combination of explicit state encoding (in XML [9])

and Python [21] scripting support, which made up the platform-neutral part. Everything

regarding the system (the way it looked, the way it behaved) was exposed through this

explicit state, and could be modified through simple APIs, requiring only an

understanding of Python scripting and of the explicit state layout. Among the benefits of

this approach w as the fact that now extensions could be w ritten, m odified, and tested “in

the field” without recompilation of the core, in principle requiring nothing more than a

simple text editor, for skilled programmers. As an added benefit of using Python

scripting, deployment of a newly created extension (script) amounted to just deploying a

text file, thus avoiding the security concerns (viruses, Trojans, etc) usually associated

with deploying executable files.

 As it is well known that every solution has its tradeoffs, the new eFuzion had to

accept responsibility for some issues that had not been of concern at the time, but for

which possible workarounds exist: from a security standpoint, since the explicit state is

publicly modifiable, a script cannot be easily stopped from (un)intentionally corrupting

the state. A possible solution can be provided by script signing, such that in a production

system if a new script needs to be used it would first have to go through a review

authority that will give its stamp of approval if everything seems fine. A second problem

exists when uncooperative, conflicting scripts, are used. To alleviate this situation, an

5

“eF uzion scripting guidelines” section is provided in A ppendix B that includes useful tips

regarding what to do and what not to do when writing a script.

 There is still some work to be done until this version can provide the complete

feature set of its predecessors, primarily on the network model for which there is

currently only a preliminary analysis.

Related Work

 Many other universities have bought into the idea that using technology in

classrooms will enable students to become more productive and as a result earn higher

grades. Some notable research projects include:

 UW Classroom Presenter [23] – a project that started at Microsoft Research in

2002 and was continued by University of Washington, which turned it into a

valuable resource for networked instruction. The interesting observation about

this project is that it relies on the ConferenceXP [3] platform for its network

infrastructure, just like the first version of eFuzion.

 ReMarkable Texts [22] – a Brown University effort following the same goals of

technology-enabled instruction, providing functionality that enables conducting

general and domain-specific note-taking research. Its communication

infrastructure also relies on the ConferenceXP platform.

 MIT InkBoard [16] – although this project is currently retired it is worth

mentioning due to its ability to provide collaborative real-time sketching and

audio/video conferencing between users. As with the previous two projects,

ConferenceXP is used as the network transport mechanism.

6

All the above projects cash in on the benefits offered by the natural feel of note-taking

provided by Tablet PCs.

 C om m ercially, the only product that’s directly geared tow ards live, in-class,

collaboration is offered by DyKnow [6]. It, too, started as a research project and was

initially developed at DePauw University.

 Considering the technical approaches taken by eFuzion, related work can include

projects like Emacs and TeX that rely heavily on scripting to achieve extensibility. With

respect to the explicit state encoding in XML used by eFuzion, the closest related efforts

existing include the XUL [17] platform from Mozilla, the XAML [8] platform from

Microsoft (will be available in the upcoming Windows Vista product), and XUI [26] – a

Java based open-source framework. The major difference between these projects and the

approach taken by eFuzion is that eFuzion actually updates the XML representation of

the state whenever its internal state changes, while all these other projects are more

geared toward defining user interface elements and associating actions to them, but not

updating their XML representation when internal changes occur.

7

CHAPTER 2: MOTIVATION

Motivation

 The results of the comparative study done in the early stages of eFuzion

motivated the Educational Technology Group to continue the research pioneered by

eFuzion, fueled by a growing interest from the user population (instructors and students)

and the underutilization of the potential of the Tablet PC platform. As a consequence,

many of the traditional pedagogical models have been studied and, where possible,

enhanced through the use of technology. As an example, it is well known that student

engagement in classroom activities depends a lot on the student’s ability to establish

direct contact with the instructor and peers. The traditional collaboration model does not

make it easy for students (especially in large classrooms) to share ideas with each other

or easily address issues concerning the materials presented by the instructor. This is one

area where eFuzion has concentrated a lot of effort: providing students with an

unprecedented ability to collaborate and engage in classroom activities, as well as

creating a direct communication channel between the students and faculty, through the

use of a graphical newsgroup.

 From a technical point of view the motivation behind the design of eFuzion v3

included the need for complete extensibility and potential for portability. The choice of

Python as the scripting language for coding eFuzion extensions took into consideration

the dynamic nature of the language, its widespread availability, and publicly recognized

performance characteristics. Since the extensions needed to communicate with the

8

application core, Python needed a way to interface with the C# language. This was done

initially through Python.NET [20], an experimental bridge that allowed the passing of

objects and method calls from one language to the other, and later through IronPython

[12], a new project from Microsoft that provided more intimate ties between Python and

.NET [1].

Design Considerations

 The research performed during the development of the first two iterations of

eFuzion together with the analysis of the feedback obtained from the users, led to the

conclusion that the fluid nature of the user requirements makes a rigid design impractical.

For this reason a different approach was needed that could easily adapt to the

requirements fluctuation, while still providing the indispensible set of features present in

the prior versions. The resulting design comes a long way towards achieving these goals,

having as the central component a very generic framework that could be used as the

foundation for many different types of applications. The only reason this application is a

classroom presentation and interaction system is because of the scripts determining it to

behave as such. The advantage of this approach lies in the fact that the key properties

(extensibility and portability) are preserved irrespective of the type of application built on

top of this framework.

Extensibility

 The need for extensibility grew out of the understanding that a fixed set of

features are insufficient to make everybody happy. Given that the goal of this application

was to become a very useful educational tool, it was concluded that many of the most

9

meaningful extensions to this application may come as contributions from the users

themselves, as they are the ones most likely to discover what they need the application to

do, how it should look, and what the interaction with it should be like. In order to

facilitate the scenario where the users can assume the role of developers the application

needed to provide a quick way for contributors to make customizations and add desired

functionality. Scripting was the obvious choice.

After the decision was made to allow everyone to make contributions to this

application via scripting, the next step was to decide on how the scripts were to interact

with the application and modify its state. Having a rigid API that provides very good

sandboxing properties is beneficial from a security / stability standpoint, however it

creates hard limits around what the user can do, ultimately creating a tight leash around

the user’s im agination. A s that contradicted the principle of allow ing the user freedom of

expression, it was decided to take the opposite approach and give the user full control

over the application by exposing the entire application state publicly in XML form, and

providing the means for scripts to make modifications to this state. As a consequence

users can customize any part of the system they need and add functionality in an

unrestricted way, provided that certain conventions regarding the XML state are

followed. Since this is a research project, concerns regarding security and stability were

put aside to achieve maximum extensibility. The goal was to see if this model was viable

and if it indeed allows for a faster / better application customization experience, while

harvesting the benefits of “on -the-fly” scripting and high portability.

10

Portability

 As educational technology gains momentum in the race towards a more efficient

educational system the underlying technology evolves continuously at a very rapid pace.

It may not be far into the future when the laptops of today, weighing a healthy couple of

pounds and only providing few hours of battery life, will be replaced by pocket-size full-

featured mini computers that have more memory and processing power than many

desktop computers today. It is equally plausible to think that many of the technologies

that currently exist only on proprietary platforms will be made available to other

(potentially open source) operating systems.

Even if that is not the case, it is still possible to design the application in a way

that allows interoperation across different systems. For example, eFuzion currently relies

heavily on the Microsoft inking technology, which is not available outside the Windows

platform. This essentially locks eFuzion into being available only on Windows machines

loaded with the Tablet PC SDK. However, in order to have access to a more diversified

user base, it was decided that allowing the possibility of running eFuzion on non-

Microsoft platforms should become a requirement. As a consequence the application had

to be factored out into a non-portable, platform-specific part, and a portable, platform-

independent part. The separation was done in a way that allowed for maximal code reuse

across platforms. Python was chosen as the driving force behind the platform

independent part, for its performance, portability, and dynamism. Combined with the

explicit access to the XML representation of the application state (which is not platform-

dependent), interoperation between different platforms could, at least theoretically, be

achieved. For example, if it was desired to port this application to the UNIX

11

environment, only the platform-specific part would need to be re-written (in Java, for

example). Inking information could be rendered on the screen as a series of connected

points at the coordinates encoded in the XML state, applying the specified thickness and

color, while safely ignoring all other attributes that might not be reproducible without the

Microsoft ink technology. One might wonder why Java was not used from the beginning,

and the answer to that is that Microsoft ink technology was providing the most natural

note-taking experience, and it was available only on the .NET platform.

Scalability

 The discussion about scalability only makes sense in the context of networking,

for which there is only a preliminary analysis. The prior versions of eFuzion have tried

different approaches for the network transport layer: eFuzion v1 relied on

ConferenceXP, a research project from Microsoft that provides the infrastructure needed

to create distributed applications, while eFuzion v2 has resorted to a more traditional

unicast-based transmission method. Both these solutions had problems that needed to be

addressed: ConferenceXP was placing stringent constraints regarding the type of

networking infrastructure needed (it required access to an Internet2 backbone), and it

confined the application to a specific model that was not easy to work with. The unicast-

based transmission employed by eFuzion v2 had a different problem: it did not scale

well. As the number of clients increased, so did the load on the server machine. Since

updates had to be sent separately to each client, the server had to work harder every time

a new client was added to the session, and the application performance degraded

correspondingly. The problem was compounded by the fact that all clients were

12

connected wirelessly to the network, and due to the message replication the wireless

medium was overloaded with data transfers, resulting in many dropped connections.

Based on the above observations the conclusion was that for eFuzion v3 a

different network transport method has to be used. It was clear that unicast-based

transm ission w ill alw ays result in a system that’s not scalable, so m ulticast solutions w ere

investigated. The difficulty in using traditional multicast comes from the fact that

multicast is an unreliable, unguaranteed, connectionless protocol. In order for multicast

to be useful for eFuzion, delivery guarantees needed to be added to the protocol, but this

proved to be a rather time-consuming task. Consequently attention turned towards

existing solutions for reliable multicast, and the salvation came in the form of the PGM

protocol for which there was built-in support on the Windows platform. Experiments

using this technology showed it being far superior to anything else used in the past,

although it only alleviated the problem, not solved it completely. The reason is that while

instructor-generated notes that needed to be sent to all the connected clients could use this

mechanism for transmission very efficiently, if the reverse situation was needed (all

clients to send their work to a server for recording, for example) then PGM would not

provide any relief as all clients had to use the wireless medium to send their data to the

server. If this situation is unacceptable for eFuzion, then this problem needs to be tackled

at a different level, perhaps reconsidering the business rules of the application.

13

CHAPTER 3: SYSTEM ARCHITECTURE

Overview

 The general idea and motivation behind the design of eFuzion v3 has been

presented in the previous chapters. This chapter expands on that knowledge and provides

an in-depth view under the hood of eFuzion v3.

Script Script Script ...

System state (XML)

Renderer Low-level
networking

Platform
neutral

Platform
specific

APIs Python
engine

Microsoft .NET (C#)

Figure 3.1 - High-level view of the system architecture

 Figure 3.1 shows a high-level view of the system architecture, which consists of

two parts: the platform-specific and platform-neutral parts. The platform-specific part

constitutes the core of eFuzion: it includes components such as the renderer, low-level

networking, Python engine, and extensibility APIs. The platform-neutral part is

described by the explicit system state encoding in XML, and the collection of Python

scripts that modify this state. The primary responsibility of the renderer is to update the

display based on the information stored in the system state. Python scripts have access to

modify this state through a set of generic XML-manipulating functions defined in the

API. This allows for maximum extensibility as scripts can modify anything pertaining to

14

the system state. Scripts can be loaded and unloaded from memory as needed because

the system state includes the local state of each script, and removing a script from

memory amounts to just removing its associated sections from the XML describing the

state. Scripts are notified of user events by registering their interest with the objects

triggering those events through the addition of the corresponding properties to the XML

node describing those objects. Communication between scripts and the system core

happens through the Python engine, which interfaces C# to the Python language.

Scripts

Py
th

on
 b

rid
ge

APIs

Renderer

System state
(XML)

3

User Interface

1

4

2

7

5

6

Figure 3.2 - System flow diagram

Figure 3.2 shows the communication paths between the different components as

messages pass through the system. Events originating from the user interface are

captured by the renderer (1), which in turn updates the system state accordingly (2). If

any scripts have registered interest in the handling of these events, the renderer invokes

the appropriate script functions through the Python bridge (3). In response to these

events scripts may want to update the user interface, and to do so they use API functions

to make the necessary modifications to the system state (4). Next, also using functions

published in the API, they indicate to the system that rendering needs to be performed

15

(5). The renderer, in turn, reads the modifications in the state (6) and updates the user

interface accordingly (7).

 At startup, the application initializes the Python engine and loads the initial state

of the system from an XML file with the same name as the application executable. The

renderer is then invoked to “project” the logical system state onto the screen. A fterw ards

the application enters a wait state, expecting commands from the user. The system state

can be saved explicitly into an XML file any time during the operation of the application,

much like the way Windows saves state in preparation for hibernation. This way the

application can be resumed at a later time, from the same state where it was left off.

System State

The need to encode the system state explicitly has been justified by the desire for

extensibility. The decision to use XML as the mechanism to encode the system state was

made in line with the necessity for portability. This XML representation of the state lives

in the application memory while the application is running, but can be saved to

permanent storage if desired. The structure of the state is dictated by the hierarchical

organization of XML. Since eFuzion is centered on its user interface, this organization

maps naturally to the way visual elements are constructed. As a consequence, anything

that is visible on the screen pertaining to eFuzion can be traced back to a node in the

XML state – this includes the menu, toolbars, ink, frames (windows), etc. For example,

Figure 3.3 shows the way menus are encoded in the XML representation of the initial

state of the system at startup.

16

Figure 3.3 - XML encoding of the menus in the initial state of eFuzion

As has been mentioned before, the framework employed by eFuzion is very generic and

allows the creation of many types of extensions on top of it. These extensions live inside

scripts that can be loaded on top of the framework at any time. The framework allows

multiple extensions to coexist at the same time. Currently the XML file containing the

initial state of the system at startup defines only the functionality necessary for this

framework to be usable. This includes functionality to load scripts, unload scripts,

manage windows, save and load state, and exit. There is nothing in there regarding the

“presentation and interaction” aspects of the educational application; in order to access

that functionality the extension (script) providing it must be first loaded. Chapter 4 will

present this extension in more detail.

 Some of the objects defined in the system (the system includes the framework and

any extensions loaded) generate events when triggered (such as buttons being clicked, ink

strokes being completed, windows being resized, etc.). The XML state contains

mappings from events to functions defined in scripts that get executed in response to

17

these events. In Figure 3.3, for example, when the user clicks the menu item called

“L oad S tate… ” the function “F ileL oadS tate” defined inside G lobalM enu.py is executed.

The labeling of many of the XML nodes in the state closely follows the naming of the

corresponding visual elements from .NET. This allows developers to easily track the

places inside the X M L state w here the visual elem ents they’re interested in are defined.

Furthermore, the labels used for describing events that objects can trigger correspond to

the names of the events published by the .NET counterparts of these objects.

 The state is not made up only of elements that have a visual representation; it can

include partial results of calculations, the values of counters, and many other things

applications might need to perform their bookkeeping. In fact anything that can be

considered “state” should be encoded in the XML. The way the XML state is structured

allows great flexibility regarding the place where extensions can store their local state.

Only visual elements need to follow certain rules that ensure that the renderer can find

them and display them on the screen.

 The best way to explain the rules governing the structure of the state is by

showing some examples of how the state information is organized in XML. Because the

full XML hierarchy takes up a lot of space, it will be unfolded progressively as the

discussion proceeds. Figure 3.4 shows the XML description of the initial state at

application startup, with no extensions yet loaded. The root element describes the

properties of the main form of the application. In accordance with the .NET structure for

the Form class, the attributes defined in the XML map directly to the attributes of the

form. Under the hood reflection is used to implement this mapping. This allows

developers maximum flexibility in setting the properties of visual objects. The main

18

application form is an MDI container that hosts the frames associated with extensions. A

frame is an MDI child window defined by an extension. An extension can define

multiple frames if needed.

Figure 3.4 - Initial XML state of eFuzion

T he “Init” section of the XML contains information used during application initialization

at startup; it contains a “G lobals” node w here extensions can optionally define resources,

menus, and toolbars to be used globally, and a “S cripts” node that allow s the application

to keep track of the loaded scripts (not shown as there are no scripts loaded initially).

T he evolution of the system state after the “L ecture” extension was loaded can be

seen in Figure 3.5. T he “Init” section of the state has been collapsed since its purpose

was already explained. T he “L ecture” section of the X M L state contains inform ation

specific to the “L ecture” extension. If the extension needs to create a new fram e inside

the main application space (as m ost extensions w ill) then the “F ram es” subsection needs

to contain the definition of the frame.

19

Figure 3.5 - System state after loading the “Lecture” script

T he use of the “C urrentF ram e” attribute on the root node of the XML state indicates that

the frame corresponding to the referenced id is the currently focused frame of the

application. If an extension defines more than one frame, switching between them

program m atically happens by changing the value of the “C urrentF ram e” attribute to point

to the desired fram e. A ssigning an “id” value to the fram e is the responsibility of the

extension. Ids can be generated using the supplied “generate” function defined in the file

GUID.py. The “D isplayedO bjects” property is a renderer-required attribute of the frame

whose role is to indicate the place in the XML state which describes what should be

displayed in the frame. How and when the renderer makes use of this attribute will be

covered in detail in the section titled “R enderer”.

There are two levels of menus and toolbars: global and frame-specific. The way

they are differentiated is through their placement inside the XML hierarchy. Items

defined in the global menu (or toolbar) are available even when extensions are loaded and

running. For example, the load state and save state functionality defined as global in the

20

fram ew ork (see F igure 3.3 w hich show s the expanded “M enus” section from F igure 3.4)

can be accessed at any time while eFuzion is running, even if other extensions have been

loaded. The default global m enu used by the fram ew ork is defined in the “eF uzion”

subnode. Extensions can add to this menu (and/or create global toolbars) by adding a

node labeled w ith the extension nam e as a child of the “G lobals” node. F igure 3.6 (top)

shows the default definition of the m enu called “G lobalM enuS trip” w ith its sub -items

(figure content part of the Init->Globals->eFuzion node). The bottom of the same figure

shows the situation where an extension was loaded that adds two items to

“G lobalM enuS trip” (figure content part of the Init->Globals->Lecture node).

Figure 3.6 - Default menu definition (top), extension-augmented definition (bottom)

Menu (or toolbar) entries can be added to the global menu (or toolbar) definition, but they

cannot override the behavior of the existing entries. Each entry is identified by a name.

T hat m eans that since there is a m enu item nam ed “m nuF ileL oad” as a child of

“m nuF ile” inside “G lobalM enuS trip”, an extension could not redefine its m eaning by

creating a similar structure inside Init->Globals-> <extension name> and binding it to a

different action. When making additions to an existing structure the position where the

21

new item is inserted can be specified by setting the “Index” property to achieve the

desired item order. Frame-specific menus and/or toolbars can be optionally defined as

part of each frame. These have a temporary nature because they are removed once the

parent frame is closed. When switching between frames the menu (and toolbars) change

dynamically depending on w hat has been defined under the “M enus” and “T oolbars”

sections of each frame. These sections can define items to be merged with existing

structures.

T he “R esources” section provides developers w ith a w ay to define resources that

will be used by extensions. The only type of resource currently supported is ImageStrip

(mostly used for menus and toolbars), which can be defined as in Figure 3.7. The file

specified in the “S ource” attribute contains a series of im ages of sam e size on a

horizontal strip. T he child nodes of “Im ageS trip” create labels for these im ages so they

can be used later. The way to reference the images is by specifying the name of the

image strip, followed by a colon, followed by the name of the image. Examples of this

can be seen in the bottom part of Figure 3.6. T he optional “O verride” attribute indicates

Figure 3.7 - An example of resource definition

22

w hether extensions are allow ed to replace this particular resource (default is “false”)

23

As a summary of everything described so far regarding the explicit XML state layout, a

diagram of the most important sections and attributes is presented in Figure 3.8. The

section(s) descending from “Init” are not required for the application to be able to

execute, but without them the functionality for loading/unloading of scripts and managing

the MDI frames will be missing. When extensions are loaded by the framework, the

extension-specific content is added to the XML state as depicted by the figure. It is not

required that extensions define entries in the “Init->Globals” subtree. That section is

used only when extensions want to add menu and/or toolbar items to the global

menu/toolbar scheme, and when extension-specific resources need to be registered for

later reference. Every extension has to have a unique name. The system denies the

loading of an extension if another extension with the same name has been previously

loaded. Part of the extension-specific content is the section titled “L ecture” on the right

side of the figure. This section is optional unless the extension needs to provide any

visual elements other than global menus/toolbars. When it is defined, the most notable

subsections of it are the sections titled “F ram es” and “D isplayedO bjects”. T he “F ram es”

subsection is used to hold information regarding the frames (windows) that the extension

uses to interact with the user. Each frame can optionally contain definitions for local

menus and toolbars that are displayed only in association with that frame. Extensions

define w hat should be rendered on top of the fram e by adjusting the “D isplayedO bjects”

attribute to point to the X M L section (also titled “D isplayedO bjects”) describing the

desired content. There is no requirement of where in the XML state this section needs to

be defined; extensions can organize those sections in any logical manner that makes

sense to them. For example, in the right side of the diagram of Figure 3.8 the “L ecture”

24

extension defines a frame that is used to host the contents of a document. The concept of

pages is used to organize the data in the document. Each page contains an inkable

surface (InkPicture [13]) that can display strokes and other data. When users navigate

through the pages of the document, the document frame is updated to reflect the content

of the current page. In order to implement this model the most logical placement of the

“D isplayedO bjects” section w as as part of each page. W henever page sw itching needs to

occur, all that the script needs to do in order to show the content of the new page in the

docum ent fram e is to point the “D isplayedO bjects” attribute of the fram e to the

“D isplayedO bjects” section corresponding to the new page, and then notify the renderer

to update the display.

 The last notable comment regarding the organization of the XML state is about

custom-defined (composite) visual elements. Custom-defined elements are objects that

the renderer cannot display without being told what they are composed of, in terms of the

basic visual objects the renderer knows about. The renderer is told how to render

composite elem ents by consulting the “D isplayedO bjects” section descending

immediately from the node describing the element. For example, in the diagram of

F igure 3.8 the elem ent titled “E llipse” is one such composite object. The renderer can

render an ellipse by displaying the two strokes that are composing it. Complex objects

can be rendered by grouping different custom elements together. Strokes are the most

basic graphical elements. Any shape can be constructed by grouping strokes

appropriately. However, the renderer does not only know how to render strokes; it can

render many other traditional visual elements taken from the .NET platform, as will be

shown in the next section.

25

Renderer

The primary function of the renderer is to generate visual objects that can be

displayed on the screen from the definition of the elements in the XML state. Whenever

the renderer encounters an element that it does not know how to display, it looks inside

the element definition for a “D isplayedO bjects” section that defines w hat this element is

composed of in terms of basic objects that the renderer knows about. This procedure

continues recursively until all the basic components of the unknown element are

displayed. Figure 3.9 show s the situation w here the custom elem ent “A rrow ” is defined

Figure 3.9 - Example of custom object definition

26

as being composed of a triangle and a line (both being custom objects as well). The

output from the renderer corresponding to this example is shown in Figure 3.10.

Figure 3.10 - Renderer output based on state shown in Figure 3.9

This type of grouping allows the user to select and manipulate the entire arrow as a whole

object rather than through its component elements.

The second responsibility of the renderer is to update the XML state in response

to events generated by the user interface. The user interface is composed of a collection

of basic visual elements that exist in most GUI platforms (such as .NET, Java, Tk, etc).

All these elements have some standard actions that are triggered in response to being

m anipulated by the user. F or exam ple, a B utton m ust generate a “click” event in

response to being pressed with the mouse; a Form (window) must generate events in

response to being moved, resized, minimized, or closed, and so on. Since all these visual

elements have a corresponding definition in the XML state, the properties of the actual

objects and the properties encoded in the state need to be synchronized every time one or

the other changes.

27

In order to do this synchronization the renderer maintains a two-way mapping

between the objects on the screen and their XML representation in the state. By default

the renderer registers handlers for the events indicating changes in the visual aspect of

these objects. When an event is triggered by a change to a user interface object, the

associated handler in the renderer is invoked which in turn figures out what changed and

updates the XML state accordingly. The renderer has been implemented in a way that

allows developers to use any visual object from the .NET Framework (called Control [5]

in .NET terminology) as part of their extensions. This gives developers the ability to

create functionally-rich extensions that leverage the resources of .NET. For an even

greater flexibility the renderer was designed to permit the display of visual elements

(controls) defined in external assemblies, as long as they are .NET compliant. This

greatly increases the number of options available to developers when creating extensions.

Under the hood all these benefits are obtained through the use of reflection. The

trained reader might immediately wonder how portable this solution is, and they would

be justified to question that. Even though the XML state is inherently portable to a

different platform, the renderer would have to be rewritten if the new platform does not

support .NET. For these platforms the renderer would not be able to use reflection in the

same way eFuzion currently does and would need to implement a translation layer that

would map the definition from the XML description to visual objects available on that

platform. Additionally, if an extension references a visual element from an external

assembly, that element and the ability to load assemblies would have to be implemented

as well on the new platform.

28

The third responsibility of the renderer is to allow extensions to also register

handlers for events published by the visual elements. The renderer intercepts these

events and invokes the appropriate handlers, passing information regarding the event and

surrounding context in the arguments of the function call. What these arguments are and

how scripts communicate with the renderer will be the focus of the next topic, titled

“S cripts”. F igure 3.2 shows a flow diagram where all three functions of the renderer can

be seen, w hile F igure 3.9 show s how the “L ecture” extension registers interest in the

“O nS electionC hanged” event of the “InkP icture” control, specifying that the function

“S electionC hanged” (defined in the file L ecture.py) should be executed w henever the

event is triggered.

Continuing along the execution path of eFuzion from the moment the initial XML

state file is loaded the control is given to the renderer which is now responsible for

projecting the system state on the display. Before that is accomplished the renderer loads

the textual representation of the XML state into an object structure that can be

program m atically m anipulated. F rom now on any references to “node”, “elem ent” or

“section” in the context of X M L indicate the corresponding objects in this object

structure. Next the renderer traverses the state structure and constructs a hash table that

maps the id values of all the nodes that specify an id to the nodes themselves. This is

done as an optimization to allow some elements in the state to reference other elements in

the state at different locations. Only elements that may be referenced need contain an

“id” attribute. While constructing the hash table the renderer checks that the ids specified

are unique, and throws an error if this condition is not met. After the hash table is

constructed the renderer sets up the container objects that will be used to host the

29

eventual menus and toolbars in preparation for displaying the main application form. The

properties of the m ain form are then set based on the attributes specified in the “eF uzion”

root node. Next the renderer checks if there is an “Init->Globals” section defined in the

state, and processes it as follows: first the “R esources” node is consulted (if it exists) to

create a hash table that maps the name of the resource to the node defining it. The

objects corresponding to those resources are constructed, and references to them added to

the nodes defining them. This completes the mapping from resource name -> resource

node -> resource object. S econd, the “M enus” and “T oolbars” nodes are traversed (if

they exist) and the corresponding objects created based on these definitions. The

functions processing these two sections are also responsible for figuring out if any menu

(or toolbar) merging needs to occur based on the menu (and toolbar) object structure that

exists at that time and the new items that need to be created. Before any merging is

accomplished checks are performed to determine if any global menu (or toolbar) defines

items that override other global existing items, throwing an error exception if this

situation is encountered. Next the renderer traverses the XML structure again and

records in a list all the nodes that define frames. This list is needed by the renderer to

know where to look when rendering the frames defined by extensions. The current active

fram e of the application is then identified by consulting the “C urrentF ram e” attribute of

the root node “eF uzion”. U sing the hash m apping constructed in the beginning, the node

describing that frame is quickly identified. If there are frames defined in the state, the

renderer renders them one by one onto the screen, and then gives focus to the one

identified as current. The containers holding the menus and toolbars are placed on the

application main form, which is then made visible on the screen.

30

Rendering of an individual frame follows a similar principle. First the form

object corresponding to this frame is constructed, and then its properties set based on the

attributes of the form ’s X M L definition. N ext the value of the mandatory attribute

“D isplayedO bjects” is checked against the hash m apping of ids, and if no error occurred

the renderer proceeds to render the objects in that section. The types of objects supported

by the renderer inside the “D isplayedO bjects” section include im ages, strokes, grouped

items, and controls. Images can reference external files or items defined in resources (by

using the “ResourceN am e:Item N am e” construct). F igures 3.9 and 3.10 show examples

of the use of the “D isplayedO bjects” construct and the resulting renderer output. S trokes

can only be rendered on top of ink-enabled surfaces (such as InkPicture). Ink surfaces

have a different resolution than that of the rest of the system. The following quote from

the book “B uilding T ablet P C A pplications” [14] provides the best explanation of the

concept:

"All Ink objects and Stroke objects use the HIMETRIC coordinate system. A

HIMETRIC unit represents 0.01mm where the measurement is derived from the

screen's current DPI. The coordinate space is the usual Microsoft Windows style

fourth quarter quadrant in which the origin (0,0) represents the upper left corner

of the space and the x and y coordinates imply locations to the right and down

respectively. The Stroke objects contained in the Ink object all share the

coordinate space, so each Stroke objects packet's x,y values are based from a

common (0,0) origin."

The XML state uses the Windows coordinate system to record the x and y values of the

strokes. The conversion to and from HIMETRIC is done automatically by the renderer.

31

A fter the “D isplayedO bjects” section is rendered , the next step towards finishing the

rendering of the frame involves hooking up the necessary events that allow the

synchronization between the screen object and its XML representation to occur, and

making the frame visible on the screen if instructed to by its properties. Frames

containing the “IsM odal” attribute set to “true” are show n in m odal dialogs.

 C ontrols that are part of the “D isplayedO bjects” section are rendered in a sim ilar

fashion. First the renderer establishes if the control was created before by checking if a

mapping exists between the associated XML object and the control. If none is found the

control is created and its properties set based on the attributes in the XML definition. If

the control was already created only its properties are updated. This mechanism prevents

the renderer from creating a new control every time it is invoked, thus saving system

resources. As with frames, the next step in the process involves rendering of the

“D isplayedO bjects” section associated w ith the control. T his section can be om itted if

nothing needs to be displayed on top of the control, as is the case with buttons.

Afterwards the renderer checks if the control that was just created contains an inkable

surface and if so it looks inside the “S election” section of the corresponding fram e to see

if anything needs to be visually selected. If anything is present inside that section the

renderer follow s the value of the “ref” attribute to find the exact elem ent that is

referenced, which is then rendered accordingly. The last step in the rendering of controls

involves making the control visible on the screen as defined, and hooking in the standard

events that are associated with changes in the control’s properties, so that the X M L state

can be updated to reflect these changes.

32

Scripts

 Working hand-in-hand with the renderer are the scripts that control the behavior

of the application. After the framework starts up all interaction with the application (such

as invoking any of its functionalities) results in the appropriate scripts being executed that

implement those functionalities. The communication between scripts and the renderer is

realized through the primitives defined by the framework API. Six categories of

primitives are provided:

1. XML primitives – contain functionality to manipulate the XML state (example:

functions to add nodes, remove nodes, retrieve properties of nodes, etc.)

2. Rendering primitives – contain functionality to communicate with the renderer

telling it which sections of the state should be rendered (example: RenderFrame,

RenderControl, RenderMenus, etc.)

3. Windows primitives – contain functionality that allows the creation of standard

system dialog windows (example: OpenFileDialog – helps to select which file(s)

to open, ColorChooserDialog – helps select a color from a palette of colors, etc.)

4. Image primitives – contain functionality to manipulate images (example:

GetImage – creates a snapshot of the contents of an inkable surface,

ImportImages – extracts images from PDF or PowerPoint files, etc.)

5. Application primitives – contain functionality for shutting down the application

and for obtaining the version number and other information

6. Error-handling primitives – contain functionality to display error messages

A detailed description of each of these categories and the functionality they offer can be

found in Appendix C.

33

 Scripts are written in the Python language. IronPython is currently used as the

bridge that allows Python scripts to communicate with the framework API which is

written in C#. Initially Python.NET was used for this purpose. It offered the most

complete solution because it provided access to all the features of both languages.

IronPython was in its early stages at the time and contained only partial support of the

Python semantics. The major difference between the two is in the realm of debugging.

The mechanism that Python.NET used to bridge the two languages prevented it from

marshalling the full context of errors when they occurred. This made debugging very

difficult because the error messages from the bridge were uninformative and did not point

to the exact location of the error. For example, a syntax error in a script or an error

thrown for accessing an undefined variable generated the same error message, confusing

the developer. Not even the line number of the error was known. Furthermore,

functionalities like single stepping through code, inspection of the values of variables,

breakpoints and other useful debugging tools were missing altogether. The only way to

debug a script w as through the (ab)use of “print” statements. This made debugging very

slow and frustrating. As time passed IronPython matured and once it provided enough

support of the Python semantics the transition was made to replace Python.NET.

IronPython uses a different mechanism to interface the two languages. It is actually a C#

implementation of the Python language, thus running on top of the CLR [4]. As a

consequence, debugging a Python script became as easy as debugging a C# program. All

the debugging tools (from breakpoints to step-execution and variable inspections) are

now available. The only frustration left is when developers want to use Python

34

constructs that are not yet supported by IronPython, but this only temporary as

IronPython sprints towards its 1.0 release.

 The default functionality of the framework is accessible through the set of menu

items displayed at application startup. Invoking any of these functionalities triggers the

execution of the corresponding functions from the appropriate script. The list of scripts

supplied with the framework is the following:

 Common.py – provides access to the fram ew ork A P I through the “P rim itives”

object. All scripts that require access to the API must reference this file.

 GlobalMenu.py – implements the logic corresponding to the set of menu items

provided by the framework

 GUID.py – provides functionality for generating unique ids (derived from the

m achine’s IP address, current tim e, and random bits). O ffers a w ay to extract IP

and time information from a GUID value.

 PyUtilities.py – provides a set of useful functions for managing files and scripts

The content of the script Common.py is displayed in Figure 3.11 and shows the way C#

functionality is accessed through IronP ython. T he “clr” m odule holds a link to the

IronPython engine. The code in lines 6-7 directs the engine to im port the “P rim itives”

object defined in the “eF uzion” assembly which is needed when scripts want to access

Figure 3.11 - Content of script Common.py

35

functions defined in the API.

When executing script functions the framework passes either three or four parameters

in the function call, depending on the object generating the action, as follows:

- If the object is a .NET control (descending from System.Windows.Forms.Control,

such as Button, Form, Label, etc.), then three parameters are used to represent, in

order:

o a reference to the XML node corresponding to the control that generated

the event

o a reference to the XML node corresponding to the current active frame

o a reference to the object containing the entire XML state

- If the script is invoked in response to a stroke (or a group) being clicked, or due to

an event generated by the InkPicture control, then four parameters are used, as

follows:

o a reference to the XML node corresponding to the element generating the

event

o a reference to the XML node corresponding to the InkPicture control

o a reference to the XML node corresponding to the current active frame

o a reference to the object containing the entire XML state

F igure 3.12 show s an exam ple of the use of the “P rim itives” ob ject to implement the

logic behind the functionality allowing the loading of extensions. Since the event

responsible for triggering the execution of the code in the figure is generated in response

to the user invoking the corresponding menu item (which is part of a .NET control), only

36

three parameters are passed to the handling function as mentioned above. Line 31

invokes the “S how F ileO penD ialog” W indow s prim itive w hich prom pts the user to select

Figure 3.12 – Implementation of the functionality allowing the loading of extensions (taken from
GlobalMenu.py)

37

a file of the type specified in the “filter” argum ent. T he value returned by the prim itive

contains the full path of the selected file, or null if nothing was selected. This value is

checked in line 32 which determines if the execution of the function should continue.

The code in lines 35-37 extracts the components of the file path (folder name, file name,

extension) for later use. A handle to the root node of the XML state is obtained in line

40, and used to retrieve the handle to the “S cripts” node in line 41. P assing the string

“Init::S cripts” as the second argum ent of the call to “P rim itives.G etN odeW ithT ag”

results in the following actions taking place under the hood:

1. the list of children of the node referenced by “xm lR oot” is searched for a node

labeled “Init”

2. if one is found, its list of children is searched for a node labeled “S cripts”

3. if found the function returns a handle to the node, otherwise returns null

The code in lines 42-45 checks if the node labeled “S cripts” exists, and creates one if one

can’t be found. In lines 48 -52 the function determ ines if the script that’s about to load

has already been loaded by consulting the content of the “S cripts” node, and show s an

error message if it was already loaded. In lines 58-61 the function attempts to load the

specified script and displays an error message if the operation fails. Next the function

checks if the specified script is a valid eFuzion extension (lines 64-66) by determining if

the script im plem ents a function labeled “eF uzion_init” and an error m essage is displayed

if this condition is not met. In lines 69-71 an entry is inserted in the “S cripts” section that

allows the system to keep track of the loaded script. Finally line 74 passes control to the

script by invoking the “eF uzion_init” function. M ore exam ples of the use of the platform

API can be found in C hapter 4 w hen the “L ecture” script is presented.

38

CHAPTER 4: EXAMPLE

The “Lecture” Extension

Following on the footsteps of the previous versions of eFuzion this extension

provides students and instructors with tools that can help them increase their productivity.

From the point of view of the instructor the functionality provided by this extension

allows them to create or annotate presentations that can be used as lecture materials

during class sessions. Although the networking component is not yet done for this

version of eFuzion, the materials created using this extension can be loaded by the

previous eFuzion versions which provide networking support, if necessary. Students can

use this extension to take notes during lectures, and to review their notes while at home.

T he discussion regarding this extension w ill now shift tow ards explaining w hat’s under

the hood, but not before a screen shot of the “L ecture” script in action is show n (F igure

4.1).

After eFuzion is started the “L ecture” extension can be loaded using the provided

functionality. As soon as the corresponding script is loaded, control is given to the

“eF uzion_init” function which performs any initialization tasks required by the extension.

These tasks include setting up the menus and toolbars and updating the display

accordingly. F igure 4.2 show s the code behind “eF uzion_init”. The first parameter of

the function represents the X M L node inside the “S cripts” section corresponding to this

extension. The function starts by setting the name of the script appropriately and

retrieving the start-up path of the application.

39

Figure 4.1 - Screenshot of the "Lecture" extension in action

N ext the function loads the file “L ectureG lobals.xm l” w hich contains references to the

resources used and the definitions of the global menu items and toolbar buttons provided

to the user for accessing the extension’s functionalities. T hese definitions are added to

the XML state in lines 27-29. T he call to “P rim itives.U pdateG lobal” in line 32 tells the

renderer to look inside the “eF uzion ->Init-> G lobals” section and update the screen if any

changes are found. A fter “eF uzion_init” finishes executing the application waits for

further commands from the user. At this stage the screen looks as shown in Figure 4.3.

40

Figure 4.2 - The code for "eFuzion_init" from Lecture.py

Figure 4.3 - Screenshot of eFuzion after the “Lecture” extension first loads

41

Users are now able to create new documents, save documents, and open existing

documents by invoking the appropriate functionalities.

The code for creating a new document is a bit long because it involves a lot of

XML structure manipulation, and thus will not be shown, but what it does is as follows: it

first loads the content of the file “L ectureC ontent.xm l” w hich defines the lecture frame

along with the corresponding menu and toolbar items, and then attaches it to the XML

state. Next the title of the fram e is adjusted and an id value is assigned to the fram e’s

X M L description. T hen the content of the file “L ectureP age.xm l” is loaded w hich

contains the definition of the “P ages” section, used for organizing the pages of the

document. An id value is next added to the “D isplayedO bjects” node inside the “P age”

section, and the sam e value referenced through the “D isplayedO bjects” attribute of the

lecture fram e’s X M L definition. This tells the renderer where to look to find what should

be rendered inside the frame. The XML state is then updated and the display refreshed

by a call to “P rim itives.R enderF ram e”.

The code for opening an existing document is shown in Figure 4.4. In a nutshell

it allows the user to select a file to open from a multitude of file types supported, then it

figures out w hat the appropriate “O pen” function should be that can handle that particular

file type. The code in line 140 opens the document and obtains a handle on the node

containing the XML content of the document. This XML section is then included in the

application state and the display updated to reflect the new additions. The code in line

153 takes care of updating the XML state of the menu and toolbar items to reflect the

current context. Finally the renderer is instructed to determine if any modifications were

42

m ade to the “M enus” and “T oolbars” sections of the fram e, and update the display

accordingly.

Figure 4.4 - The code for "OpenLecture" from Lecture.py

Figure 4.5 - The code for "SaveLecture" from Lecture.py

43

 Next the code for saving a document is shown in Figure 4.5. Its logic is simple:

show the user a dialog window where the name and location of the file to be saved can be

selected (lines 90-95) and then place into that file the XML section associated with the

document to be saved.

 After the user creates or opens a document, the display will look similar to that

shown in Figure 4.1. At this stage the user has access to a lot of functionality, like:

selecting pen properties, changing colors, and navigating pages. Since the code

implementing some of this functionality is quite long to be presented here only the

simpler operations will be presented in detail; longer operations will be discussed in

general terms.

 The code for changing colors is presented in Figure 4.6, and involves figuring out

what the desired color value is (line 635), and if any objects are currently selected on the

screen (lines 638-641). If nothing is selected, the next step is to determine if the color

chosen was already selected, and if so return from the function as there is nothing further

to do. Otherwise, place a check box around the button to indicate it is selected. Next, a

reference to the node describing the current pen is obtained by inspecting the value of the

“currentP en” attribute of the “P ens” node and searching for that value inside the “P ens”

section (lines 647-649). After making sure the pen node exists (line 651), the “C olor”

attribute of the “P en” node associated with the current pen is updated to reflect the new

color chosen (line 654). On the other hand, if a selection exists (as indicated by the

“S election” section of the fram e) then the function loops through all the objects selected

and updates their color accordingly (lines 660-666). The function ends by instructing the

renderer to update the display (lines 669-670).

44

Figure 4.6 - The code for "ColorSelect" from Lecture.py

 Changing the pen (or highlighter) thickness involves many of the same steps as

before, and is shown in Figure 4.7. The code in lines 755-757 figures out what the width

and height values of the desired thickness are, then obtains a reference to the “S election”

node which will be used to determine if anything was selected (line 760-763). Next, a

reference to the node describing the current pen is obtained (lines 769-771), followed by

a check for the situation where the current pen is the highlighter, in which case the width

of the pen is adjusted by half to make it look nice on the screen (line 775). The width and

45

height attributes of the current pen are finally updated in lines 778-779. If, however,

some objects were selected on the screen, then the function loops through all the selected

objects (as indicated by the children of the “S election” section of the current fram e), and

their width and height attributes updated to reflect the desired thickness chosen (lines

785-792). The last step invokes the renderer to update the display (lines 795-796).

Figure 4.7 - The code for "ThicknessSelect" from Lecture.py

46

The code for selecting the pen instrument is shown in Figure 4.8 and amounts to

finding the “P ages” section of the “L ecture” node (lines 317 -318), navigating through all

the “P age” subsections inside that section (line 321), getting a handle of the

corresponding “InkP icture” node (line 322), adjusting the “E ditingM ode” attribute to

indicate that the “Ink” pen is used (line 323), and finally updating the “C urrentP en”

attribute of the “P ens” node to reflect the selection of the new instrument (lines 326-327).

L ine 330 m akes a call to “R em oveS election” (show n in the bottom of the sam e figure)

w hich rem oves all entries inside the “S election” section of the current fram e in order

unselect everything on the screen (lines 307-308). As always, the last step invokes the

renderer to update the display (lines 333-335).

Figure 4.8 - The code for "InkPen" (top), and "RemoveSelection" (bottom) from Lecture.py

47

 The code for adding a page is a bit more complicated. It involves reading the

“L ectureP age.xm l” file and creating a corresponding X M L structure, generating a unique

value for the “id” attribute of the “D isplayedO bjects” node, and updating the attributes of

the “InkP icture” node to match those of the current page. The final steps include

attaching the resulting structure to the XML state, updating the state of the menu and

toolbar items, and invoking the renderer to refresh the display. Deleting a page is easier

and involves removing the associated XML section from the state, updating the menu and

toolbars as necessary, and finally updating the display.

 The code for navigating pages is a bit long, but only because it wants to be

visually fancy and update the menu and toolbar items for navigation to reflect the

surrounding context (i.e. visually disable the “previous” button if the current page is the

first page, etc.). In a nutshell it involves playing with the value of the attribute

“D isplayedO bjects” of the current fram e to point to the “D isplayedO bjects” node

corresponding to the new page.

There are still a lot of enhancements that can be added to this extension, namely:

the ability to print notes, undo/redo operations, enter textual input, search for text through

written notes, copy and paste using the system clipboard, and add networking support,

but due to time constraints this task will be left to interested individuals.

48

CHAPTER 5: CONCLUSIONS

Although the application presented in this study is incomplete, it can be used as a

proof-of-concept that validates the main ideas and motivation behind the design of

eFuzion, proving them to be viable. There is still a lot to do before this application can

be used in a production environment. Many details regarding the organization of the

XML state will need to be revised, refined, and potentially replaced, to allow for a more

flexible and natural extension-writing experience. One area that definitely needs

improvement is with respect to the model used by developers to implement the

functionality provided by their extensions. Currently a lot of grunt work needs to be done

to accomplish even the most basic tasks due to the assembly-like programming model

existent. To allow for a more rapid and natural extension development experience higher

level abstractions need to be provided. For example, if developers want to create a new

frame (window) for their extension, it should be possible to do so in one or two lines of

code, instead of ten, following a principle similar to the traditional OO model.

Another situation that needs to be considered is that of synchronization. Even

though objects can currently be “locked” using constructs provided by the language, if

multiple scripts modify different nodes falling in the scope of the same frame, when the

renderer is invoked to update the display it may encounter an inconsistent state and throw

an error as a result. The locking of individual nodes does not help in preventing this

situation to occur unless all the nodes falling in the scope of that frame are locked by the

49

same function, and released upon its completion. Anyone can see that this is a very

tedious process and a different method needs to be devised.

The platform-specific core can benefit from some additions and alterations too:

for instance, the way scripts register interest in the events published by .NET objects

needs to be reworked to allow the hooking of any event defined by that object. Currently

only a fixed set of events can be hooked. Additionally, the mechanism for updating the

XML state in response to changes done to the properties of objects needs to be improved

to include all the properties of an object, and not just the few that are currently tracked.

Finally the network model needs to be implemented and tested. Decisions need to

be made as to how the XML state should be changed to account for this addition, and

exactly how much control scripts should be given over the network.

Overall there are many benefits provided by this design: it allows developers to

create, test, and deploy extensions “on -the-spot”, without worrying about viruses during

the deployment process; it is extremely flexible and offers virtually unlimited

possibilities for customization given the way the system state is encoded and made

available to the scripts; finally, as a consequence of the separation of responsibilities

between the core and pool of scripts, much of the system can be ported to other platforms

without modification.

F rom the point of view of the “presentation and interaction” aspects of this

application, the “L ecture” extension follow s along the footsteps of its predecessors. It,

too, needs a lot more work before it can be considered “com plete”, but show s that it is

viable to build this type of applications on top of the eFuzion framework.

50

BIBLIOGRAPHY

[1] .NET Framework. Microsoft Corporation. July 2006.
http://msdn.microsoft.com/netframework/

[2] C# Language Reference. Microsoft Developer Network. July 2006.

http://msdn.microsoft.com/vcsharp/programming/default.aspx

[3] ConferenceXP Project. Microsoft Research.

http://www.conferencexp.net/community/default.aspx

[4] Common Language Runtime (CLR). Microsoft Corporation.

http://www.microsoft.com/downloads/details.aspx?FamilyId=5D5FE65F-DAFC-
4DB3-A6EF-A3CCE07B1B65&displaylang=en

[5] Control class (System.Windows.Forms). Microsoft Developer Network.

http://msdn2.microsoft.com/en-us/library/system.windows.forms.control.aspx

[6] DyKnow Vision. DyKnow Corporation. July 2006. http://www.dyknow.com/

[7] Educational Technologies Research Group. University of Illinois at Urbana-

Champaign. http://edtech.cs.uiuc.edu/

[8] Extensible Application Markup Language (XAML). Microsoft Corporation. June

2006. http://en.wikipedia.org/wiki/XAML

[9] Extensible Markup Language (XML). World Wide Web Consortium (W3C). April

2006. http://www.w3.org/XML/

[10] GNU Emacs. Free Software Foundation. May 2006.

http://www.gnu.org/software/emacs/

[11] GNU TeXmacs. Free Software Foundation.

http://www.texmacs.org/tmweb/home/welcome.en.html

[12] IronPython. Microsoft Corporation. July 2006.

http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython

[13] InkPicture Control. Microsoft Developer Network.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tpcsdk10/lonestar/unmanaged_ref/inkpicture_ref/tbobjinkpicture.asp

http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/vcsharp/programming/default.aspx
http://www.conferencexp.net/community/default.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=5D5FE65F-DAFC-4DB3-A6EF-A3CCE07B1B65&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=5D5FE65F-DAFC-4DB3-A6EF-A3CCE07B1B65&displaylang=en
http://msdn2.microsoft.com/en-us/library/system.windows.forms.control.aspx
http://www.dyknow.com/
http://edtech.cs.uiuc.edu/
http://en.wikipedia.org/wiki/XAML
http://www.w3.org/XML/
http://www.gnu.org/software/emacs/
http://www.texmacs.org/tmweb/home/welcome.en.html
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tpcsdk10/lonestar/unmanaged_ref/inkpicture_ref/tbobjinkpicture.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tpcsdk10/lonestar/unmanaged_ref/inkpicture_ref/tbobjinkpicture.asp

51

[14] Jarret, R., Su, P. Building Tablet PC Applications. Redmond: Microsoft Press. 2003.

[15] Microsoft Developer Network (MSDN). Microsoft Corporation.

http://msdn2.microsoft.com/en-us/default.aspx

[16] MIT InkBoard. Massachusetts Institute of Technology. Intelligent Engineering

Systems Laboratory. http://ender.mit.edu/inkboard/

[17] Mozilla XUL Project. The Mozilla Foundation. December 2003.

http://www.mozilla.org/projects/xul/

[18] Peiper, C. et all. eFuzion: Development of a Pervasive Educational System. Proc.

Innovation and Technology in Computer Science Education. Monte de Caprica,
Portugal, June 2005.

[19] PGM Reliable Transport Protocol. RFC 3208. Internet Engineering Task Force

(IETF). http://www.ietf.org/rfc/rfc3208.txt

[20] Python.NET. http://pythonnet.sourceforge.net/

[21] Python Programming Language. Python Software Foundation.

http://www.python.org/

[22] ReMarkable Texts. Brown University Computer Graphics Group.

http://graphics.cs.brown.edu/research/ReMarkableTexts/

[23] UW Classroom Presenter. University of Washington Computer Science and

Engineering. http://www.cs.washington.edu/education/dl/presenter/

[24] Wentling, T. et all. Validation of e-Fuzion: a Wireless Classroom Technology. Proc.

World Conference on E-Learning in Corp., Govt., Health & Higher Ed., Vol.
2003, Issue. 1, 2003.

[25] Windows XP Tablet PC Edition 2005. Microsoft Corporation.

http://www.microsoft.com/windowsxp/tabletpc/default.mspx

[26] XML User Interface (XUI). Xoetrope Company.

http://www.xoetrope.com/zone/index.php?zone=XUI

http://msdn2.microsoft.com/en-us/default.aspx
http://ender.mit.edu/inkboard/
http://www.mozilla.org/projects/xul/
http://www.ietf.org/rfc/rfc3208.txt
http://pythonnet.sourceforge.net/
http://www.python.org/
http://graphics.cs.brown.edu/research/ReMarkableTexts/
http://www.cs.washington.edu/education/dl/presenter/
http://www.microsoft.com/windowsxp/tabletpc/default.mspx
http://www.xoetrope.com/zone/index.php?zone=XUI

52

APPENDIX A: SETTING UP THE BUILD ENVIRONMENT

The system requirements for creating and running eFuzion extensions are as follows:

Operating System:

A ny flavor of M icrosoft W indow s™ (Windows XP Tablet PC Edition preferred when
inking functionality is desired)

Development Tools:

Microsoft Visual Studio 2005, available at: http://msdn.microsoft.com/vstudio/

Tablet PC SDK 1.7, available at: http://msdn.microsoft.com/tabletpc

Python, available at: http://www.python.org/download/

IronPython, available at:
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython

Office 2003 Primary Interop Assemblies, available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dno2k3ta/html/OfficePrimaryInteropAssembliesFAQ.asp

Ghostscript, available at: http://www.cs.wisc.edu/~ghost/

Installation Procedure:

Install, in order, the tools listed in “D evelopm ent T ools”.
For core development: unpack the eFuzion solution in an empty folder on the computer
and launch the eFuzion.sln solution file.
For extension development only: use the Windows Installer-based distribution of
eFuzion.

http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/tabletpc
http://www.python.org/download/
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dno2k3ta/html/OfficePrimaryInteropAssembliesFAQ.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dno2k3ta/html/OfficePrimaryInteropAssembliesFAQ.asp
http://www.cs.wisc.edu/~ghost/

53

APPENDIX B: SCRIPTING GUIDELINES

Extension developers are encouraged to adhere to the following guidelines in order to

maximize productivity and minimize frustration:

- Use many try-catch statements to detect and handle any anomalies during script

execution; when exceptions occur, always remove any alterations done to the state

that would leave it in an inconsistent state.

- Invoke RenderFrame only after all changes to the state that don’t require

immediate UI update have been made. This ensures a smooth visual experience

and increases application performance.

- Use the tighter-scoped Render[*] functions whenever their behavior is sufficient:

for example, after adding a menu item call RenderMenuStrip instead of

RenderFrame. This will increase the application performance.

- If something goes wrong with a script it may be a good idea to enable the

provided XML debug window by un-commenting the two lines in the

XmlRenderer constructor (in XmlRenderer.cs); this will display a window

containing a live view of the XML state; any subsequent modifications to the state

will be visible immediately in that window. Note: the application performance

will degrade when the debug window is enabled. The window can be closed at

any time to return to the original performance characteristics.

54

APPENDIX C: THE EFUZION API

XML Primitives

string GetXmlAttribute(XmlNode xmlNode, string xmlAttrName)

Description:

Gets the value of an an attribute for a specified node.

Arguments:

xmlNode – the node on which the operation should be performed
xmlAttrName – the name of the attribute whose value should be returned

Returns:

The value of the specified attribute, or null if the node does not have an attribute by that name.

SetXmlAttribute(XmlNode xmlNode, string xmlAttrName,
 string value)

Description:

Sets the value of an an attribute for a specified node, or deletes the attribute if value is null.

Arguments:

xmlNode – the node on which the operation should be performed
xmlAttrName – the name of the attribute to be set
value – the value of the attribute

XmlNode GetNodeWithTag(XmlNode xmlNode, string tagPath)

Description:

Retrieves searches the list of children of xmlNode for the node specified by tagPath
The construct T ag1:T ag2:T ag3… can be used to instruct the function to search following the path
xmlNode -> Tag1 -> Tag2 -> T ag3 …

Arguments:

xmlNode – the start node on which the operation is to be performed

55

tagPath – the list of names of nodes to be traversed

Returns:

The node with the specified tag, or null if the path does not exist

Example:

Assuming the following XML structure:

<someNode>
 <foo … >
 <bar … />
 </foo>
</someNode>

Primitives.GetNodeWithTag(someNode, “foo:bar”)

returns the node <bar … />; any num ber of tags can be specified, delim ited by „:‟

XmlNodeList GetNodesByTag(XmlNode xmlNode, string tag)

Description:

Searches the children of node xmlNode for any node that has tag as a tag and returns the list of
all found nodes matching this criteria.

Arguments:

xmlNode – the node whose children are to be searched
tag – the tag that is to be searched for

Returns:

A list of children of xmlNode that have the specified tag, or null if no children have that tag.

XmlNode GetNodeWithAttribute(XmlNode xmlNode,
 string attrName, string attrValue)

Description:

Searches the children of node xmlNode for the first node that has an attribute attrName whose
value is attrValue and returns that node, or null if no such node is found.

Arguments:

xmlNode – the node whose children are to be searched
attrName – the attribute to be queried
attrValue – the value of the attribute seeked

56

Returns:

The first child of xmlNode which has the attribute attrName with value attrValue, or null if none
was found.

XmlNode GetNodeWithAttribute(XmlNode xmlNode, string attrName,
 string attrValue, bool recursive)

Description:

Searches all descendants of node xmlNode for the first node that has an attribute attrName
whose value is attrValue and returns that node, or null if no such node is found.

Arguments:

xmlNode – the node whose descendants are to be searched
attrName – the attribute to be queried
attrValue – the value of the attribute seeked
recursive – True if the search should be done recursively, False otherwise

Returns:

The first descendant of xmlNode which has the attribute attrName with value attrValue, or null if
none was found.

string GetNodeName(XmlNode xmlNode)

Description:

Returns the name (tag) of the specified node.

Arguments:

xmlNode – the node whose name is to be returned

Returns:

The name (tag) of the specified node.

Example:

Assume the following XML node: <foo … />

Primitives.GetNodeName(fooNode)

will return “foo”

57

string GetNodeContent(XmlNode xmlNode)

Description:

Returns the content of the specified node.

Arguments:

xmlNode – the node whose content is to be returned

Returns:

The content of the specified node.

Example:

Assume the following XML node: <foo>This is some content</foo>

Primitives.GetNodeContent(fooNode)

w ill return “T his is som e content”

SetNodeContent(XmlNode xmlNode, string content)

Description:

Sets the content of a node.

Arguments:

xmlNode – the node whose content is to be set

Example:

Assume the following XML node: <foo>This is some content</foo>

Primitives.SetNodeContent(fooNode, “New content”)

will change fooNode to read: <foo>New content</foo>

XmlNode GetRootNode(XmlDocument document)

Description:

Returns the root node of an XML document

Arguments:

document – the XML document

58

Returns:

The root node of document. Note: The parameter document contains a reference to the object
holding the entire XML tree.

XmlNodeList GetChildNodes(XmlNode xmlNode)

Description:

Returns a list of all children of xmlNode.

Arguments:

xmlNode – the node whose children are to be returned

Returns:

A list of all children of xmlNode, or null if xmlNode has no children.

bool HasChildNodes(XmlNode xmlNode)

Description:

Returns a boolean value corresponding to whether xmlNode has children or not.

Arguments:

xmlNode – the node on which the operation is to be performed

Returns:

True if xmlNode has at least one child node, False otherwise.

XmlNode GetFirstChild(XmlNode xmlNode)

Description:

Returns the first child of xmlNode, or null if xmlNode has no children.

Arguments:

xmlNode – the node on which the operation is to be performed

Returns:

The first child of xmlNode, or null if xmlNode has no children.

59

XmlNode GetLastChild(XmlNode xmlNode)

Description:

Returns the last child of xmlNode, or null if xmlNode has no children.

Arguments:

xmlNode – the node on which the operation is to be performed

Returns:

The last child of xmlNode, or null if xmlNode has no children.

XmlNode GetNextSibling(XmlNode xmlNode)

Description:

Returns the next sibling of xmlNode, or null if xmlNode has no next sibling.

Arguments:

xmlNode – the node on which the operation is to be performed

Returns:

The next sibling of xmlNode, or null if xmlNode has no next sibling.

Example:

Assume the following XML structure:

<foo>
 <bar />
 <har />
 <zar />
</foo>

Primitives.GetNextSibling(harNode)

will return zarNode.

XmlNode GetPreviousSibling(XmlNode xmlNode)

Description:

Returns the previous sibling of xmlNode, or null if xmlNode has no previous sibling.

Arguments:

60

xmlNode – the node on which the operation is to be performed

Returns:

The previous sibling of xmlNode, or null if xmlNode has no previous sibling.

XmlNode GetParentNode(XmlNode xmlNode)

Description:

Returns the parent of xmlNode, or null if xmlNode has no parent.

Arguments:

xmlNode – the node on which the operation is to be performed

Returns:

The parent of xmlNode, or null if xmlNode has no parent.

XmlNode GetNodeWithId(string id)

Description:

R eturns the node that has the attribute “id” w ith value id.

Arguments:

id – the unique id that identifies the node seeked

Returns:

T he node that has the attribute “id” w ith value id.

AppendChild(XmlNode xmlParent, XmlNode xmlChild)

Description:

Appends a node at the end of the child list of another node.

Arguments:

xmlParent – the node that will gain a new child
xmlChild – the node that is to be inserted

61

PrependChild(XmlNode xmlParent, XmlNode xmlChild)

Description:

Inserts a node at the beginning of the child list of another node.

Arguments:

xmlParent – the node that will gain a new child
xmlChild – the node that is to be inserted

InsertBefore(XmlNode xmlRefNode, XmlNode xmlNode)

Description:

Inserts a node before another node (the inserted node will become the previous sibling of the
reference node).

Arguments:

xmlRefNode – the reference node
xmlNode – the node that is to be inserted

InsertAfter(XmlNode xmlRefNode, XmlNode xmlNode)

Description:

Inserts a node after another node (the inserted node will become the next sibling of the
reference node).

Arguments:

xmlRefNode – the reference node
xmlNode – the node that is to be inserted

ReplaceChild(XmlNode xmlParent, XmlNode xmlNew, XmlNode xmlOld)

Description:

Replaces one of the children of a node with another node.

Arguments:

xmlParent – the node on whose children the operation is to be performed
xmlNew – the node that is to replace the old node
xmlOld – the node that is to be replaced by the new node

62

RemoveNode(XmlNode xmlNode)

Description:

Removes a node.

Arguments:

xmlNode – the node that is to be removed

RemoveAllChildren(XmlNode xmlNode)

Description:

Removes all the children of a node.

Arguments:

xmlNode – the node whose children are to be removed

XmlNode CloneNode(XmlNode xmlNode, bool deep)

Description:

Creates a clone of a given node. The clone could be shallow or deep, depending on the value of
the parameter deep.

Arguments:

xmlNode – the node that is to be cloned
deep – True if deep clone should be performed (copy all children), False otherwise

Returns:

A new node that is a clone of the specified node.

XmlNode CreateXml(XmlDocument xmlDocument, string strXml)

Description:

Creates a node object from a given string representation.

Arguments:

xmlDocument – the object representing the XML document
strXml – the string value containing the raw XML definition

Returns:

63

A new node that has been created based on the information provided in strXml.

SaveXml(XmlNode xmlNode, string fileName)

Description:

Saves the XML subtree rooted at xmlNode in the file specified by fileName.

Arguments:

xmlNode – the node that represents the root of the subtree that is to be saved
fileName – the file path where the XML data is to be saved

SaveState(XmlDocument xmlDocument, string fileName)

Description:

Saves the XML document in the file specified by fileName.

LoadState(string fileName)

Description:

Loads the XML state from the file specified by fileName and switches to the new state.

Rendering Primitives

RenderFrame(XmlNode xmlFrame)

Description:

Renders the contents of the frame specified by xmlFrame. The menus and toolbars are not
rendered. See RenderLocals for a function that renders both menus and toolbars.

Arguments:

xmlFrame – the node specifying the frame that is to be rendered

RenderMenuStrip(XmlNode xmlMenuStrip)

Description:

Renders a menu strip.

64

Arguments:

xmlMenuStrip – the node specifying the menu strip that is to be rendered

RenderToolStrip(XmlNode xmlToolStrip)

Description:

Renders a toolbar strip.

Arguments:

xmlToolStrip – the node specifying the toolbar strip that is to be rendered

RenderMenus(XmlNode xmlMenus)

Description:

Renders all the menu strips contained in xmlMenus.

Arguments:

xmlMenus – the node containing the menu strips that are to be rendered

RenderToolbars(XmlNode xmlToolbars)

Description:

Renders all the toolbar strips contained in xmlToolbars.

Arguments:

xmlToolbars – the node containing the toolbar strips that are to be rendered

RenderLocals(XmlNode xmlFrame)

Description:

Renders the local menus and toolbars.

Arguments:

xmlFrame – the node specifying the frame whose menus and toolbars are to be rendered

65

RenderControl(XmlNode xmlControl, XmlNode xmlParent)

Description:

R enders a control on the specified “surface”.

Arguments:

xmlControl – the node describing the control that is to be rendered
xmlParent – the node describing the control on top of which rendering is done

RenderDisplayedObjects(XmlNode xmlDisplayedObjects,
 XmlNode xmlParent)

Description:

R enders a D isplayedO bjects node on the specified “surface”.

Arguments:

xmlDisplayedObjects – the DisplayedObjects node that is to be rendered
xmlParent – the node describing the control on top of which rendering is done

UpdateGlobal(XmlNode xmlGlobal)

Description:

R enders the content of the “G lobals” node specified by xmlGlobal. This updates resources and
renders the menus and toolbars defined in that section.

Arguments:

xmlGlobal - the node referencing the “G lobals” section

Windows Primitives

string ShowFileOpenDialog(string caption, string filter)

Description:

Prompts the user to select a file based on the specified filter.

Arguments:

caption – the title of the dialog window
filter – specifies the file types allowed

66

Returns:

The fully qualified path name of the selected file, or null if the Cancel button was pressed.

string ShowFileSaveDialog(string caption, string filter)

Description:

Prompts the user to select the file that will be used as a destination for the save operation.

Arguments:

caption - the title of the dialog window
filter - specifies the file types allowed. More info: here

Returns:

The fully qualified path name of the selected file, or null if the Cancel button was pressed.

string ShowColorChooserDialog(string selectedColor)

Description:

Prompts the user to select a color from the ones provided in the dialog.

Arguments:

selectedColor - the color that the dialog will show as selected, or null to use the default selection

Returns:

T he selected color as a string w ith form at “A , R , G , B ”, or null if the Cancel button was pressed.
[A = transparency (255 fully opaque, 0 fully transparent), R = red, G = green, B = blue]

string ShowThicknessDialog(string value)

Description:

Prompts the user to select the desired pen thickness.

Arguments:

value - the thickness value that will show as selected

Returns:

The selected thickness value.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformsfiledialogclassfiltertopic.asp

67

Image Primitives

int GetImageWidth(Image image)

Description:

Returns the width of a given image.

Arguments:

image – the image object whose width is to be returned

Returns:

The width of the specified image.

int GetImageHeight(Image image)

Description:

Returns the height of a given image.

Arguments:

image – the image object whose height is to be returned

Returns:

The height of the specified image.

SaveImage(Image image, string filePath)

Description:

Saves an image to a file.

Arguments:

image – the image object that needs to be saved
filePath – the file where the image is to be saved

ArrayList ImportImages(string fileName)

Description:

Returns a list of images “captured” from the specified file. C urrently supported are Pow erPoint,
PDF, Postscript, and EPS files.

68

Returns:

A list of im ages representing “screenshots” of the pages contained in the specified file.

Application Primitives

string GetStartupPath()

Description:

Returns the startup path of the application.

ApplicationExit()

Description:

Exits the application.

AboutPyFuzion()

Description:

Displays the “About” box containing application version information and copyright notice.

Error-handling Primitives

ShowError(string errorMsg)

Description:

Shows a dialog box containing the specified error message.

Arguments:

errorMsg – the error message that should be displayed

	Thesis Title Page.pdf
	Thesis - Abstract, Dedication, Acknowledgements, TOC, TOF.pdf
	Thesis Content.pdf

